Unraveling the small tie problem mystery: Size effects from finger counting to mental strategies in addition.

IF 1.8 2区 心理学 Q3 PSYCHOLOGY, DEVELOPMENTAL Journal of Experimental Child Psychology Pub Date : 2024-12-28 DOI:10.1016/j.jecp.2024.106154
Jeanne Bagnoud, Céline Poletti, Marie Krenger, Mathusanaa Mahendrathas, Jasinta Dewi, Catherine Thevenot
{"title":"Unraveling the small tie problem mystery: Size effects from finger counting to mental strategies in addition.","authors":"Jeanne Bagnoud, Céline Poletti, Marie Krenger, Mathusanaa Mahendrathas, Jasinta Dewi, Catherine Thevenot","doi":"10.1016/j.jecp.2024.106154","DOIUrl":null,"url":null,"abstract":"<p><p>Determining how children solve arithmetic problems when they stop using their fingers is a real challenge. To take it up, the evolution of problem-size effects for tie and non-tie problems was observed when 6-year-olds (N = 65) shift from finger counting to mental strategies. These observations revealed that the problem-size effect remained the same for non-tie problems, whereas it drastically decreased for tie problems. Moreover, the solving strategy for tie problems switched directly from the representation of both operands on fingers to retrieval without transition through the representation of only one operand on fingers. This direct switch could be made possible by the relative ease to commit symmetrical representations to memory (in the case of tie problems) rather than non-symmetrical ones (in the case of non-tie problems). This would explain why, early during development, small tie problems are solved quickly and present null or negligible size effects. All in all, our results and interpretations provide an answer to the long-standing question as to why tie problems have a special cognitive status. Our results also nuance the classical description of the developmental pattern reported in all textbook chapters devoted to numerical cognition according to which a finger strategy where only one operand is represented on fingers constitutes a developmental stage between the representation of two operands on fingers and retrieval. We demonstrate here that it is true only for non-tie problems.</p>","PeriodicalId":48391,"journal":{"name":"Journal of Experimental Child Psychology","volume":"252 ","pages":"106154"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Child Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1016/j.jecp.2024.106154","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PSYCHOLOGY, DEVELOPMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Determining how children solve arithmetic problems when they stop using their fingers is a real challenge. To take it up, the evolution of problem-size effects for tie and non-tie problems was observed when 6-year-olds (N = 65) shift from finger counting to mental strategies. These observations revealed that the problem-size effect remained the same for non-tie problems, whereas it drastically decreased for tie problems. Moreover, the solving strategy for tie problems switched directly from the representation of both operands on fingers to retrieval without transition through the representation of only one operand on fingers. This direct switch could be made possible by the relative ease to commit symmetrical representations to memory (in the case of tie problems) rather than non-symmetrical ones (in the case of non-tie problems). This would explain why, early during development, small tie problems are solved quickly and present null or negligible size effects. All in all, our results and interpretations provide an answer to the long-standing question as to why tie problems have a special cognitive status. Our results also nuance the classical description of the developmental pattern reported in all textbook chapters devoted to numerical cognition according to which a finger strategy where only one operand is represented on fingers constitutes a developmental stage between the representation of two operands on fingers and retrieval. We demonstrate here that it is true only for non-tie problems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.50
自引率
7.70%
发文量
190
期刊介绍: The Journal of Experimental Child Psychology is an excellent source of information concerning all aspects of the development of children. It includes empirical psychological research on cognitive, social/emotional, and physical development. In addition, the journal periodically publishes Special Topic issues.
期刊最新文献
The relation of verbal and nonverbal skills to basic numerical processing of preterm versus term-born preschoolers. Do children match described probabilities? The sampling hypothesis applied to repeated risky choice. The impact of absolute and relative feedback on children's self-evaluation: Transitioning from kindergarten to first grade. Unraveling the small tie problem mystery: Size effects from finger counting to mental strategies in addition. Connections among family socioeconomic status, aerobic fitness, executive function, and the positive experiences of childhood physical activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1