SurfR: Riding the wave of RNA-seq data with a comprehensive bioconductor package to identify surface protein-coding genes.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Bioinformatics advances Pub Date : 2024-12-14 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbae201
Aurora Maurizio, Anna Sofia Tascini, Marco J Morelli
{"title":"SurfR: Riding the wave of RNA-seq data with a comprehensive bioconductor package to identify surface protein-coding genes.","authors":"Aurora Maurizio, Anna Sofia Tascini, Marco J Morelli","doi":"10.1093/bioadv/vbae201","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Proteins at the cell surface connect signaling networks and largely determine a cell's capacity to communicate and interact with its environment. In particular, variations in transcriptomic profiles are often observed between healthy and diseased cells, leading to distinct sets of cell-surface proteins. For these reasons, cell-surface proteins may act as biomarkers for the detection of cells of interest in tissues or body fluids, are often the target of pharmaceutical agents, and hold significant promise in the clinical practice for diagnosis, prognosis, treatment development, and evaluation of therapy response. Therefore, implementing robust methods to identify condition-specific cell-surface proteins is of pivotal importance to advance biomedical research.</p><p><strong>Results: </strong>We developed SurfR, an R/Bioconductor package providing a streamlined end-to-end workflow for computationally identifying surface protein-coding genes from expression data. Our user-friendly, comprehensive workflow performs systematic expression data retrieval from public databases, differential gene expression across conditions, integration of datasets, enrichment analysis, identification of targetable proteins on a condition of interest, and data visualization.</p><p><strong>Availability and implementation: </strong>SurfR is released under GNU-GPL-v3.0 License. Source code, documentation, examples, and tutorials are available through Bioconductor (http://www.bioconductor.org/packages/SurfR). RMD notebooks with the use cases code described in the manuscript can be found on GitHub (https://github.com/auroramaurizio/SurfR_UseCases).</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbae201"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671034/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Proteins at the cell surface connect signaling networks and largely determine a cell's capacity to communicate and interact with its environment. In particular, variations in transcriptomic profiles are often observed between healthy and diseased cells, leading to distinct sets of cell-surface proteins. For these reasons, cell-surface proteins may act as biomarkers for the detection of cells of interest in tissues or body fluids, are often the target of pharmaceutical agents, and hold significant promise in the clinical practice for diagnosis, prognosis, treatment development, and evaluation of therapy response. Therefore, implementing robust methods to identify condition-specific cell-surface proteins is of pivotal importance to advance biomedical research.

Results: We developed SurfR, an R/Bioconductor package providing a streamlined end-to-end workflow for computationally identifying surface protein-coding genes from expression data. Our user-friendly, comprehensive workflow performs systematic expression data retrieval from public databases, differential gene expression across conditions, integration of datasets, enrichment analysis, identification of targetable proteins on a condition of interest, and data visualization.

Availability and implementation: SurfR is released under GNU-GPL-v3.0 License. Source code, documentation, examples, and tutorials are available through Bioconductor (http://www.bioconductor.org/packages/SurfR). RMD notebooks with the use cases code described in the manuscript can be found on GitHub (https://github.com/auroramaurizio/SurfR_UseCases).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SurfR:利用综合生物导引软件包识别表面蛋白编码基因,引领 RNA-seq 数据浪潮。
动机:细胞表面的蛋白质连接信号网络,并在很大程度上决定细胞与环境沟通和相互作用的能力。特别是,在健康细胞和患病细胞之间经常观察到转录组谱的变化,导致不同的细胞表面蛋白质组。由于这些原因,细胞表面蛋白可以作为检测组织或体液中感兴趣的细胞的生物标志物,通常是药物制剂的靶标,并且在临床实践中对诊断,预后,治疗开发和治疗反应评估具有重要的前景。因此,实施稳健的方法来鉴定条件特异性细胞表面蛋白对推进生物医学研究至关重要。结果:我们开发了SurfR,这是一个R/Bioconductor包,提供了一个简化的端到端工作流程,用于从表达数据中计算识别表面蛋白编码基因。我们的用户友好、全面的工作流程从公共数据库中进行系统的表达数据检索、不同条件下的差异基因表达、数据集集成、富集分析、在感兴趣的条件下鉴定可靶向蛋白和数据可视化。可用性和实现:SurfR在GNU-GPL-v3.0许可证下发布。源代码、文档、示例和教程可通过Bioconductor (http://www.bioconductor.org/packages/SurfR)获得。手稿中描述的带有用例代码的RMD笔记本可以在GitHub (https://github.com/auroramaurizio/SurfR_UseCases)上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
Imputation for Lipidomics and Metabolomics (ImpLiMet): a web-based application for optimization and method selection for missing data imputation. estiMAge: development of a DNA methylation clock to estimate the methylation age of single cells. Integrative co-registration of elemental imaging and histopathology for enhanced spatial multimodal analysis of tissue sections through TRACE. Predicting CRISPR-Cas9 off-target effects in human primary cells using bidirectional LSTM with BERT embedding. Genal: a Python toolkit for genetic risk scoring and Mendelian randomization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1