Size-dependent Nanoparticle Accumulation In Venous Malformations.

Journal of vascular anomalies Pub Date : 2024-12-06 eCollection Date: 2024-12-01 DOI:10.1097/JOVA.0000000000000103
Kathleen Cullion, Claire A Ostertag-Hill, Weimin Tang, Michelle Pan, Daniel S Kohane
{"title":"Size-dependent Nanoparticle Accumulation In Venous Malformations.","authors":"Kathleen Cullion, Claire A Ostertag-Hill, Weimin Tang, Michelle Pan, Daniel S Kohane","doi":"10.1097/JOVA.0000000000000103","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The current treatment of venous malformations (VMs) consists of medications with systemic toxicity and procedural interventions with high technical difficulty and risk of hemorrhage. Using nanoparticles (NPs) to enhance drug delivery to VMs could enhance efficacy and decrease systemic toxicity. NPs can accumulate in tissues with abnormal vasculature, a concept known as the enhanced permeation and retention (EPR) effect. EPR has been documented in tumors, bioengineered vessels, and VMs. However, in VMs, it is unknown if NP size affects EPR and if so, which particle size improves NP accumulation.</p><p><strong>Methods: </strong>In this study, we used a murine model of subcutaneous VMs using human umbilical vein endothelial cells that express the most frequent VM-causing tyrosine kinase with immunoglobulin and EGF homology domains mutation, tyrosine kinase with immunoglobulin and EGF homology domains-L914F. Hollow silica NPs coated in polyethylene glycol (PEG) and conjugated to a fluorophore were administered systemically via tail vein injection. We studied the accumulation of a range of NP sizes within the VM and organs using confocal microscopy and an in vivo imaging system.</p><p><strong>Results: </strong>The 20, 50, 80, and 180 nm PEGylated, fluorophore-tagged hollow silica NPs were spherical and had hydrodynamic diameters of 31.6 ± 0.9, 58.5 ± 0.1, 87.1 ± 2.4, and 232 ± 1.26 nm, respectively. Following systemic NP administration, 20 nm NPs had 2 times more fluorescence accumulation within VMs compared with 50 nm, and 6 times more fluorescence accumulation compared with larger (greater than 80 nm) NPs (<i>P</i> < .01).</p><p><strong>Conclusion: </strong>This study helps to determine the optimal NP size for passive accumulation within VMs and lays the foundation for engineering NPs for the treatment of VMs.</p>","PeriodicalId":74008,"journal":{"name":"Journal of vascular anomalies","volume":"5 4","pages":"e00103"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670902/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of vascular anomalies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/JOVA.0000000000000103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The current treatment of venous malformations (VMs) consists of medications with systemic toxicity and procedural interventions with high technical difficulty and risk of hemorrhage. Using nanoparticles (NPs) to enhance drug delivery to VMs could enhance efficacy and decrease systemic toxicity. NPs can accumulate in tissues with abnormal vasculature, a concept known as the enhanced permeation and retention (EPR) effect. EPR has been documented in tumors, bioengineered vessels, and VMs. However, in VMs, it is unknown if NP size affects EPR and if so, which particle size improves NP accumulation.

Methods: In this study, we used a murine model of subcutaneous VMs using human umbilical vein endothelial cells that express the most frequent VM-causing tyrosine kinase with immunoglobulin and EGF homology domains mutation, tyrosine kinase with immunoglobulin and EGF homology domains-L914F. Hollow silica NPs coated in polyethylene glycol (PEG) and conjugated to a fluorophore were administered systemically via tail vein injection. We studied the accumulation of a range of NP sizes within the VM and organs using confocal microscopy and an in vivo imaging system.

Results: The 20, 50, 80, and 180 nm PEGylated, fluorophore-tagged hollow silica NPs were spherical and had hydrodynamic diameters of 31.6 ± 0.9, 58.5 ± 0.1, 87.1 ± 2.4, and 232 ± 1.26 nm, respectively. Following systemic NP administration, 20 nm NPs had 2 times more fluorescence accumulation within VMs compared with 50 nm, and 6 times more fluorescence accumulation compared with larger (greater than 80 nm) NPs (P < .01).

Conclusion: This study helps to determine the optimal NP size for passive accumulation within VMs and lays the foundation for engineering NPs for the treatment of VMs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Size-dependent Nanoparticle Accumulation In Venous Malformations. Identifying Genetic Mutations in Vascular Anomalies Using a Sequencing Panel for Childhood Cancers: A Pilot Study Diagnostic Pitfalls: Soft Tissue Lymphoma: Superficial Soft Tissue Lymphoma Mimicking a Venous Malformation Multidisciplinary Fusion: A recurrent expansive prevertebral vascular anomaly with EWSR1::NFATC2 fusion The Lived Experience of Patients with Vascular Malformations: A Qualitative Meta-synthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1