Maarit H. Lahtinen , Tuomas Niemi-Aro , Danila Morais de Carvalho , Kirsi S. Mikkonen , Ilkka Kilpeläinen , Sami Heikkinen
{"title":"Pseudo-3D HSQC0, a method to create a true 2D HSQC0-plane. Application to softwood extract analysis","authors":"Maarit H. Lahtinen , Tuomas Niemi-Aro , Danila Morais de Carvalho , Kirsi S. Mikkonen , Ilkka Kilpeläinen , Sami Heikkinen","doi":"10.1016/j.jmr.2024.107825","DOIUrl":null,"url":null,"abstract":"<div><div>Pseudo-3D HSQC<sub>0</sub> provides an alternative and easy way to record and analyze quantitative HSQC<sub>0</sub>-data. In the original time-zero extrapolated <sup>1</sup>H–<sup>13</sup>C HSQC (HSQC<sub>0</sub>), three separate 2D constant-time (CT) HSQC-experiments (HSQC<sub>i</sub>, <em>i</em> = 1–3) are acquired, where either 1,2 or 3 consecutive CT-HSQC-propagators are repeated in each pulse sequence, and the 2D integral data from the three 2D experiments is analyzed via linear regression. In the presented pseudo-3D HSQC<sub>0</sub>, HSQC<sub>i</sub> is one of the dimensions and all data is contained within one dataset, which is recorded in interleaved manner by acquiring the same t<sub>1</sub>-value for each HSQC<sub>i</sub>-point before t<sub>1</sub>-incrementation. The 3D-nature of the data allows the utilization of backward linear prediction to calculate an actual time-zero 2D HSQC<sub>0</sub> spectrum, which can be analyzed using normal 2D integration procedures for quantitative results. In all, the pseudo-3D enables straightforward, intuitive and easy analysis of the quantitative 2D HSQC<sub>0</sub> spectrum/plane. As the recorded pseudo 3D data contains the normal HSQC<sub>i</sub> planes, also the classic linear regression analysis can be applied.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"371 ","pages":"Article 107825"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S109078072400209X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Pseudo-3D HSQC0 provides an alternative and easy way to record and analyze quantitative HSQC0-data. In the original time-zero extrapolated 1H–13C HSQC (HSQC0), three separate 2D constant-time (CT) HSQC-experiments (HSQCi, i = 1–3) are acquired, where either 1,2 or 3 consecutive CT-HSQC-propagators are repeated in each pulse sequence, and the 2D integral data from the three 2D experiments is analyzed via linear regression. In the presented pseudo-3D HSQC0, HSQCi is one of the dimensions and all data is contained within one dataset, which is recorded in interleaved manner by acquiring the same t1-value for each HSQCi-point before t1-incrementation. The 3D-nature of the data allows the utilization of backward linear prediction to calculate an actual time-zero 2D HSQC0 spectrum, which can be analyzed using normal 2D integration procedures for quantitative results. In all, the pseudo-3D enables straightforward, intuitive and easy analysis of the quantitative 2D HSQC0 spectrum/plane. As the recorded pseudo 3D data contains the normal HSQCi planes, also the classic linear regression analysis can be applied.
期刊介绍:
The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.