Pseudo-3D HSQC0, a method to create a true 2D HSQC0-plane. Application to softwood extract analysis

IF 2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS Journal of magnetic resonance Pub Date : 2025-02-01 DOI:10.1016/j.jmr.2024.107825
Maarit H. Lahtinen , Tuomas Niemi-Aro , Danila Morais de Carvalho , Kirsi S. Mikkonen , Ilkka Kilpeläinen , Sami Heikkinen
{"title":"Pseudo-3D HSQC0, a method to create a true 2D HSQC0-plane. Application to softwood extract analysis","authors":"Maarit H. Lahtinen ,&nbsp;Tuomas Niemi-Aro ,&nbsp;Danila Morais de Carvalho ,&nbsp;Kirsi S. Mikkonen ,&nbsp;Ilkka Kilpeläinen ,&nbsp;Sami Heikkinen","doi":"10.1016/j.jmr.2024.107825","DOIUrl":null,"url":null,"abstract":"<div><div>Pseudo-3D HSQC<sub>0</sub> provides an alternative and easy way to record and analyze quantitative HSQC<sub>0</sub>-data. In the original time-zero extrapolated <sup>1</sup>H–<sup>13</sup>C HSQC (HSQC<sub>0</sub>), three separate 2D constant-time (CT) HSQC-experiments (HSQC<sub>i</sub>, <em>i</em> = 1–3) are acquired, where either 1,2 or 3 consecutive CT-HSQC-propagators are repeated in each pulse sequence, and the 2D integral data from the three 2D experiments is analyzed via linear regression. In the presented pseudo-3D HSQC<sub>0</sub>, HSQC<sub>i</sub> is one of the dimensions and all data is contained within one dataset, which is recorded in interleaved manner by acquiring the same t<sub>1</sub>-value for each HSQC<sub>i</sub>-point before t<sub>1</sub>-incrementation. The 3D-nature of the data allows the utilization of backward linear prediction to calculate an actual time-zero 2D HSQC<sub>0</sub> spectrum, which can be analyzed using normal 2D integration procedures for quantitative results. In all, the pseudo-3D enables straightforward, intuitive and easy analysis of the quantitative 2D HSQC<sub>0</sub> spectrum/plane. As the recorded pseudo 3D data contains the normal HSQC<sub>i</sub> planes, also the classic linear regression analysis can be applied.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"371 ","pages":"Article 107825"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S109078072400209X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Pseudo-3D HSQC0 provides an alternative and easy way to record and analyze quantitative HSQC0-data. In the original time-zero extrapolated 1H–13C HSQC (HSQC0), three separate 2D constant-time (CT) HSQC-experiments (HSQCi, i = 1–3) are acquired, where either 1,2 or 3 consecutive CT-HSQC-propagators are repeated in each pulse sequence, and the 2D integral data from the three 2D experiments is analyzed via linear regression. In the presented pseudo-3D HSQC0, HSQCi is one of the dimensions and all data is contained within one dataset, which is recorded in interleaved manner by acquiring the same t1-value for each HSQCi-point before t1-incrementation. The 3D-nature of the data allows the utilization of backward linear prediction to calculate an actual time-zero 2D HSQC0 spectrum, which can be analyzed using normal 2D integration procedures for quantitative results. In all, the pseudo-3D enables straightforward, intuitive and easy analysis of the quantitative 2D HSQC0 spectrum/plane. As the recorded pseudo 3D data contains the normal HSQCi planes, also the classic linear regression analysis can be applied.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
伪3d HSQC0,一个创建一个真正的二维HSQC0平面的方法。在软木提取物分析中的应用。
伪3d HSQC0提供了一种记录和分析定量HSQC0数据的简便方法。在原始的时间零外推1H-13C HSQC (HSQC0)中,获得3个独立的二维恒定时间(CT) HSQC实验(HSQCi, i = 1-3),在每个脉冲序列中重复1、2或3个连续的CT-HSQC传播子,并对3个二维实验的二维积分数据进行线性回归分析。在本文提出的伪三维HSQC0中,HSQCi是其中一个维度,所有数据都包含在一个数据集中,通过在t1递增之前对每个HSQCi点获取相同的t1值,以交错方式记录。数据的3d性质允许利用反向线性预测来计算实际的时间零二维HSQC0光谱,可以使用正常的二维积分程序进行分析以获得定量结果。总之,伪3d可以直接,直观和轻松地分析定量二维HSQC0光谱/平面。由于记录的伪三维数据包含正常的HSQCi平面,因此也可以应用经典的线性回归分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.80
自引率
13.60%
发文量
150
审稿时长
69 days
期刊介绍: The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.
期刊最新文献
Implementation of the X-centric pulse sequence at low field for MRI of water penetration in clay A deep learning framework for multiplet splitting classification in 1H NMR 400 MHz/263 GHz ultra-low temperature MAS-DNP using a closed-cycle helium gas cooling system and a solid-state microwave source Outside Front Cover Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1