Long‐term data reveal widespread phenological change across major US estuarine food webs

IF 7.6 1区 环境科学与生态学 Q1 ECOLOGY Ecology Letters Pub Date : 2024-12-31 DOI:10.1111/ele.14441
Robert J. Fournier, Denise D. Colombano, Robert J. Latour, Stephanie M. Carlson, Albert Ruhi
{"title":"Long‐term data reveal widespread phenological change across major US estuarine food webs","authors":"Robert J. Fournier, Denise D. Colombano, Robert J. Latour, Stephanie M. Carlson, Albert Ruhi","doi":"10.1111/ele.14441","DOIUrl":null,"url":null,"abstract":"Climate change is shifting the timing of organismal life‐history events. Although consequential food‐web mismatches can emerge if predators and prey shift at different rates, research on phenological shifts has traditionally focused on single trophic levels. Here, we analysed >2000 long‐term, monthly time series of phytoplankton, zooplankton, and fish abundance or biomass for the San Francisco, Chesapeake, and Massachusetts bays. Phenological shifts occurred in over a quarter (28%) of the combined series across all three estuaries. However, phenological trends for many taxa (ca. 29–68%) did not track the changing environment. While planktonic taxa largely advanced their phenologies, fishes displayed broad patterns of both advanced and delayed timing of peak abundance. Overall, these divergent patterns illustrate the potential for climate‐driven trophic mismatches. Our results suggest that even if signatures of global climate change differ locally, widespread phenological change has the potential to disrupt estuarine food webs.","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"26 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/ele.14441","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Climate change is shifting the timing of organismal life‐history events. Although consequential food‐web mismatches can emerge if predators and prey shift at different rates, research on phenological shifts has traditionally focused on single trophic levels. Here, we analysed >2000 long‐term, monthly time series of phytoplankton, zooplankton, and fish abundance or biomass for the San Francisco, Chesapeake, and Massachusetts bays. Phenological shifts occurred in over a quarter (28%) of the combined series across all three estuaries. However, phenological trends for many taxa (ca. 29–68%) did not track the changing environment. While planktonic taxa largely advanced their phenologies, fishes displayed broad patterns of both advanced and delayed timing of peak abundance. Overall, these divergent patterns illustrate the potential for climate‐driven trophic mismatches. Our results suggest that even if signatures of global climate change differ locally, widespread phenological change has the potential to disrupt estuarine food webs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecology Letters
Ecology Letters 环境科学-生态学
CiteScore
17.60
自引率
3.40%
发文量
201
审稿时长
1.8 months
期刊介绍: Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.
期刊最新文献
Elevated Temperature Diminishes Reciprocal Selection in an Experimental Plant‐Pollinator‐Herbivore System Leaf Dry Matter Content Is Phylogenetically Conserved and Related to Environmental Conditions, Especially Wildfire Activity Getting better with age: Lessons from the Kenya Long‐term Exclosure Experiment (KLEE) Density dependence maintains long‐term stability despite increased isolation and inbreeding in the Florida Scrub‐Jay Multi‐Trophic Level Responses to Marine Heatwave Disturbances in the California Current Ecosystem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1