{"title":"Microscopic mechanism and applications of radiative cooling materials: A comprehensive review","authors":"Kai Zhang, Bingyang Wu","doi":"10.1016/j.mtphys.2024.101643","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a state-of-the-art review on the microscopic mechanisms of existing radiative cooling materials. In this review, we analyze the microscopic mechanisms of efficient mid-infrared emissivity generated by photonic crystal-based radiative coolers, polymer-based radiative coolers, polar dielectric particle-polymer-based radiative coolers, and adaptive radiative coolers after clarifying the basic physical concepts of radiative cooling. Then, the mid-infrared emissivity and associated cooling properties of different materials, advantages and disadvantages of different radiative coolers and their application scenarios are discussed in detail. Finally, the threshold of spectral modulation is derived to address the relationship between mid-infrared emissivity and solar reflectance to achieve radiative cooling. This review can provide guidance for the design and application of radiative coolers.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"51 ","pages":"Article 101643"},"PeriodicalIF":10.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324003195","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a state-of-the-art review on the microscopic mechanisms of existing radiative cooling materials. In this review, we analyze the microscopic mechanisms of efficient mid-infrared emissivity generated by photonic crystal-based radiative coolers, polymer-based radiative coolers, polar dielectric particle-polymer-based radiative coolers, and adaptive radiative coolers after clarifying the basic physical concepts of radiative cooling. Then, the mid-infrared emissivity and associated cooling properties of different materials, advantages and disadvantages of different radiative coolers and their application scenarios are discussed in detail. Finally, the threshold of spectral modulation is derived to address the relationship between mid-infrared emissivity and solar reflectance to achieve radiative cooling. This review can provide guidance for the design and application of radiative coolers.
期刊介绍:
Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.