{"title":"Missing pieces in the puzzle of ecology of microbial arsenate reduction","authors":"Chaolei Yuan, Guilan Duan, Fangbai Li","doi":"10.1016/j.jhazmat.2024.137054","DOIUrl":null,"url":null,"abstract":"Arsenic pollution and its associated health risks have raised widespread concern. Under anaerobic conditions, arsenic mobility and toxicity increase when arsenate [As(V)] is reduced to arsenite [As(III)] by microbes through the cytoplasmic and dissimilatory pathways. However, the relative importance of these two pathways in the environment remains unclear, restricting our ability to effectively predict and regulate the environmental behavior of arsenic. Here, we review reports that declared a major role of the cytoplasmic or dissimilatory pathway in the environment and point out their limitations. We then summarize the key environmental factors influencing microbial As(V) reduction. Based on studies examining the expression of genes involved in the two As(V) reduction pathways, we hypothesize that the cytoplasmic pathway predominates at relatively high environmental As(III) concentrations, while the dissimilatory pathway is more significant at low concentrations. Future research is needed to test this hypothesis, and the expression of As(V)-reducing genes as a function of As(III) concentration can be investigated with various environmental samples and gradients.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"26 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.137054","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Arsenic pollution and its associated health risks have raised widespread concern. Under anaerobic conditions, arsenic mobility and toxicity increase when arsenate [As(V)] is reduced to arsenite [As(III)] by microbes through the cytoplasmic and dissimilatory pathways. However, the relative importance of these two pathways in the environment remains unclear, restricting our ability to effectively predict and regulate the environmental behavior of arsenic. Here, we review reports that declared a major role of the cytoplasmic or dissimilatory pathway in the environment and point out their limitations. We then summarize the key environmental factors influencing microbial As(V) reduction. Based on studies examining the expression of genes involved in the two As(V) reduction pathways, we hypothesize that the cytoplasmic pathway predominates at relatively high environmental As(III) concentrations, while the dissimilatory pathway is more significant at low concentrations. Future research is needed to test this hypothesis, and the expression of As(V)-reducing genes as a function of As(III) concentration can be investigated with various environmental samples and gradients.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.