Justus Hennecke, Leonardo Bassi, Cynthia Albracht, Angelos Amyntas, Joana Bergmann, Nico Eisenhauer, Aaron Fox, Lea Heimbold, Anna Heintz-Buschart, Thomas W. Kuyper, Markus Lange, Yuri Pinheiro Alves de Souza, Akanksha Rai, Marcel Dominik Solbach, Liesje Mommer, Alexandra Weigelt
{"title":"Plant Species Richness and the Root Economics Space Drive Soil Fungal Communities","authors":"Justus Hennecke, Leonardo Bassi, Cynthia Albracht, Angelos Amyntas, Joana Bergmann, Nico Eisenhauer, Aaron Fox, Lea Heimbold, Anna Heintz-Buschart, Thomas W. Kuyper, Markus Lange, Yuri Pinheiro Alves de Souza, Akanksha Rai, Marcel Dominik Solbach, Liesje Mommer, Alexandra Weigelt","doi":"10.1111/ele.70032","DOIUrl":null,"url":null,"abstract":"<p>Trait-based approaches have been increasingly used to relate plants to soil microbial communities. Using the recently described root economics space as an approach to explain the structure of soil-borne fungal communities, our study in a grassland diversity experiment reveals distinct root trait strategies at the plant community level. In addition to significant effects of plant species richness, we show that the collaboration and conservation gradient are strong drivers of the composition of the different guilds of soil fungi. Saprotrophic fungi are most diverse in species-rich plant communities with ‘slow’ root traits, whereas plant pathogenic fungi are most diverse and abundant in communities with ‘fast’ and ‘DIY’ root traits. Fungal biomass is strongly driven by plant species richness. Our results illustrate that the root economics space and plant species richness jointly determine the effects of plants on soil fungal communities and their potential role in plant fitness and ecosystem functioning.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"28 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.70032","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.70032","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Trait-based approaches have been increasingly used to relate plants to soil microbial communities. Using the recently described root economics space as an approach to explain the structure of soil-borne fungal communities, our study in a grassland diversity experiment reveals distinct root trait strategies at the plant community level. In addition to significant effects of plant species richness, we show that the collaboration and conservation gradient are strong drivers of the composition of the different guilds of soil fungi. Saprotrophic fungi are most diverse in species-rich plant communities with ‘slow’ root traits, whereas plant pathogenic fungi are most diverse and abundant in communities with ‘fast’ and ‘DIY’ root traits. Fungal biomass is strongly driven by plant species richness. Our results illustrate that the root economics space and plant species richness jointly determine the effects of plants on soil fungal communities and their potential role in plant fitness and ecosystem functioning.
期刊介绍:
Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.