Applications of Transformers in Computational Chemistry: Recent Progress and Prospects

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry Letters Pub Date : 2024-12-31 DOI:10.1021/acs.jpclett.4c03128
Rui Wang, Yujin Ji, Youyong Li, Shuit-Tong Lee
{"title":"Applications of Transformers in Computational Chemistry: Recent Progress and Prospects","authors":"Rui Wang, Yujin Ji, Youyong Li, Shuit-Tong Lee","doi":"10.1021/acs.jpclett.4c03128","DOIUrl":null,"url":null,"abstract":"The powerful data processing and pattern recognition capabilities of machine learning (ML) technology have provided technical support for the innovation in computational chemistry. Compared with traditional ML and deep learning (DL) techniques, transformers possess fine-grained feature-capturing abilities, which are able to efficiently and accurately model the dependencies of long-sequence data, simulate complex and diverse chemical spaces, and explore the computational logic behind the data. In this Perspective, we provide an overview of the application of transformer models in computational chemistry. We first introduce the working principle of transformer models and analyze the transformer-based architectures in computational chemistry. Next, we explore the practical applications of the model in a number of specific scenarios such as property prediction and chemical structure generation. Finally, based on these applications and research results, we provide an outlook for the research of this field in the future.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"83 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c03128","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The powerful data processing and pattern recognition capabilities of machine learning (ML) technology have provided technical support for the innovation in computational chemistry. Compared with traditional ML and deep learning (DL) techniques, transformers possess fine-grained feature-capturing abilities, which are able to efficiently and accurately model the dependencies of long-sequence data, simulate complex and diverse chemical spaces, and explore the computational logic behind the data. In this Perspective, we provide an overview of the application of transformer models in computational chemistry. We first introduce the working principle of transformer models and analyze the transformer-based architectures in computational chemistry. Next, we explore the practical applications of the model in a number of specific scenarios such as property prediction and chemical structure generation. Finally, based on these applications and research results, we provide an outlook for the research of this field in the future.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
期刊最新文献
Unravelling the Mechanical and Superconducting Properties in Borophene with Multicentered Bonds Schiff Base-Mediated Dual Active Site Catalyst for Efficient N-Formylation of Amines with CO2 Theoretical Investigation of Two-Dimensional FeC4 Structures with Surface Van Hove Singularity for Electrochemical Nitric Oxide Reduction Reaction ANI-1ccx-gelu Universal Interatomic Potential and Its Fine-Tuning: Toward Accurate and Efficient Anharmonic Vibrational Frequencies Unusual Inertness of a Ta8+ Cluster in Dinitrogen Reactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1