Modeling inter- and intra-granular dislocation transport using crystal plasticity

IF 9.4 1区 材料科学 Q1 ENGINEERING, MECHANICAL International Journal of Plasticity Pub Date : 2025-02-01 DOI:10.1016/j.ijplas.2024.104222
Subhendu Chakraborty , Abigail Hunter , D.J. Luscher
{"title":"Modeling inter- and intra-granular dislocation transport using crystal plasticity","authors":"Subhendu Chakraborty ,&nbsp;Abigail Hunter ,&nbsp;D.J. Luscher","doi":"10.1016/j.ijplas.2024.104222","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents the development of a crystal plasticity material model that incorporates both dislocation transport within grains and dislocation transfer across grain boundaries. This model has been implemented in the open-source finite element code MOOSE. In addition, a novel geometry-based criterion is developed to determine the direction of dislocation transfer across grain boundaries. The transfer criterion incorporates the geometric features of the grain boundary, such as the grain boundary plane normal, and its misorientation, which is accounted for through the orientation of the incoming and outgoing slip systems. The model is tested with several cases, including a copper single crystal, bi-crystal, and polycrystal. The development of the transfer criterion, implementation of the model, and its application to these test cases are discussed in detail.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"185 ","pages":"Article 104222"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641924003498","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents the development of a crystal plasticity material model that incorporates both dislocation transport within grains and dislocation transfer across grain boundaries. This model has been implemented in the open-source finite element code MOOSE. In addition, a novel geometry-based criterion is developed to determine the direction of dislocation transfer across grain boundaries. The transfer criterion incorporates the geometric features of the grain boundary, such as the grain boundary plane normal, and its misorientation, which is accounted for through the orientation of the incoming and outgoing slip systems. The model is tested with several cases, including a copper single crystal, bi-crystal, and polycrystal. The development of the transfer criterion, implementation of the model, and its application to these test cases are discussed in detail.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用晶体塑性模拟晶间和晶内位错输运
这项工作提出了晶体塑性材料模型的发展,该模型结合了晶粒内的位错传递和跨晶界的位错传递。该模型已在开源有限元代码MOOSE中实现。此外,提出了一种新的基于几何的判据来确定位错跨晶界转移的方向。传递准则结合了晶界的几何特征,如晶界平面法向及其取向偏差,这是通过进出滑动系统的取向来解释的。该模型在几种情况下进行了测试,包括铜单晶,双晶和多晶。详细讨论了转移准则的开发、模型的实现及其在这些测试用例中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Plasticity
International Journal of Plasticity 工程技术-材料科学:综合
CiteScore
15.30
自引率
26.50%
发文量
256
审稿时长
46 days
期刊介绍: International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena. Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.
期刊最新文献
Manipulating the interfacial structures in titanium alloys containing interstitial solutes delivers ultra-high strength and ductility Effect of precipitate phase on the plastic deformation behavior of Alloy 718: in-situ tensile experiment and crystal plasticity simulation Enhancing fatigue life of low-carbon ultra-high strength steel by inducing multi-component precipitates Editorial Board Metastability-engineering strategy in CoCrFeMnNi-based medium- and high-entropy alloys: Unraveling the interplay with recrystallization, grain growth, and mechanical properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1