{"title":"Modeling inter- and intra-granular dislocation transport using crystal plasticity","authors":"Subhendu Chakraborty , Abigail Hunter , D.J. Luscher","doi":"10.1016/j.ijplas.2024.104222","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents the development of a crystal plasticity material model that incorporates both dislocation transport within grains and dislocation transfer across grain boundaries. This model has been implemented in the open-source finite element code MOOSE. In addition, a novel geometry-based criterion is developed to determine the direction of dislocation transfer across grain boundaries. The transfer criterion incorporates the geometric features of the grain boundary, such as the grain boundary plane normal, and its misorientation, which is accounted for through the orientation of the incoming and outgoing slip systems. The model is tested with several cases, including a copper single crystal, bi-crystal, and polycrystal. The development of the transfer criterion, implementation of the model, and its application to these test cases are discussed in detail.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"185 ","pages":"Article 104222"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641924003498","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents the development of a crystal plasticity material model that incorporates both dislocation transport within grains and dislocation transfer across grain boundaries. This model has been implemented in the open-source finite element code MOOSE. In addition, a novel geometry-based criterion is developed to determine the direction of dislocation transfer across grain boundaries. The transfer criterion incorporates the geometric features of the grain boundary, such as the grain boundary plane normal, and its misorientation, which is accounted for through the orientation of the incoming and outgoing slip systems. The model is tested with several cases, including a copper single crystal, bi-crystal, and polycrystal. The development of the transfer criterion, implementation of the model, and its application to these test cases are discussed in detail.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.