{"title":"A feature-based pavement image registration method for precise pavement deterioration monitoring","authors":"Zhongyu Yang, Mohsen Mohammadi, Haolin Wang, Yi-Chang (James) Tsai","doi":"10.1111/mice.13407","DOIUrl":null,"url":null,"abstract":"Over the past decade, pavement imaging systems, particularly 3D laser technology, have been widely adopted by transportation agencies for network-level pavement condition evaluations. State Highway Agencies, including Georgia Department of Transportation (DOT), Florida DOT, and Texas DOT, have been collecting pavement images for over 5 years. However, these multi-year pavement images have not been fully utilized for analyzing detailed pavement deterioration. One challenge is the accurate and efficient registration of multi-temporal pavement images. This study pioneers the use of feature-based methods to address this challenge. It evaluates various feature-based image registration methods, including both state-of-the-art and novel combinations of feature detectors and descriptors. These methods are rigorously assessed using hybrid “step-by-step” and “end-to-end” performance evaluation metrics, with a ground reference dataset containing 100 pavement image pairs featuring diverse crack types and varying year gaps. The results confirm the feasibility of using feature-based techniques to register multi-temporal pavement images. A novel combination of the AKAZE detector and the Binary Robust Independent Elementary Features (BRIEF) descriptor was identified as the best-performing method, successfully registering 96 out of 100 image pairs. This advancement enables pavement engineers to accurately monitor pavement deterioration using multi-temporal images.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"134 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13407","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Over the past decade, pavement imaging systems, particularly 3D laser technology, have been widely adopted by transportation agencies for network-level pavement condition evaluations. State Highway Agencies, including Georgia Department of Transportation (DOT), Florida DOT, and Texas DOT, have been collecting pavement images for over 5 years. However, these multi-year pavement images have not been fully utilized for analyzing detailed pavement deterioration. One challenge is the accurate and efficient registration of multi-temporal pavement images. This study pioneers the use of feature-based methods to address this challenge. It evaluates various feature-based image registration methods, including both state-of-the-art and novel combinations of feature detectors and descriptors. These methods are rigorously assessed using hybrid “step-by-step” and “end-to-end” performance evaluation metrics, with a ground reference dataset containing 100 pavement image pairs featuring diverse crack types and varying year gaps. The results confirm the feasibility of using feature-based techniques to register multi-temporal pavement images. A novel combination of the AKAZE detector and the Binary Robust Independent Elementary Features (BRIEF) descriptor was identified as the best-performing method, successfully registering 96 out of 100 image pairs. This advancement enables pavement engineers to accurately monitor pavement deterioration using multi-temporal images.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.