Effects of Polymer Matrix and Atmospheric Conditions on Photophysical Properties of a Cesium Lead Bromide (CsPbBr3) Perovskite Quantum Dot

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry Letters Pub Date : 2024-12-31 DOI:10.1021/acs.jpclett.4c02780
Jaesang Yu, Jinwoong Jo, Hyeyoung Joung, Chanwoo Kim, Yunmo Sung, Juwon Oh, Jaesung Yang
{"title":"Effects of Polymer Matrix and Atmospheric Conditions on Photophysical Properties of a Cesium Lead Bromide (CsPbBr3) Perovskite Quantum Dot","authors":"Jaesang Yu, Jinwoong Jo, Hyeyoung Joung, Chanwoo Kim, Yunmo Sung, Juwon Oh, Jaesung Yang","doi":"10.1021/acs.jpclett.4c02780","DOIUrl":null,"url":null,"abstract":"Understanding the environment-dependent stability and photoluminescence (PL) properties of advanced perovskite materials remains a challenge with conflicting views. Herein, we investigated the influence of the host matrix (poly(methyl methacrylate) (PMMA) and polystyrene (PS)) and atmospheric conditions (ambient and N<sub>2</sub>) on the PL properties of a CsPbBr<sub>3</sub> perovskite quantum dot (PQD) using single-particle spectroscopy. Despite the same PL blinking mechanism, the PL properties of the PQD were considerably affected by the environmental conditions. The charge trapping and detrapping rates of the PQD were lower and higher, respectively, under ambient atmosphere than under N<sub>2</sub> owing to surface defect passivation by oxygen. The frequency and rate of PQD decomposition were higher in the PMMA matrix than in the PS matrix under an ambient atmosphere. PS achieved superior PQD encapsulation owing to its higher affinity toward hydrophobic surface ligands because of its aromatic rings, thereby protecting the PQD surface from moisture and thus inhibiting decomposition.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"48 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c02780","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the environment-dependent stability and photoluminescence (PL) properties of advanced perovskite materials remains a challenge with conflicting views. Herein, we investigated the influence of the host matrix (poly(methyl methacrylate) (PMMA) and polystyrene (PS)) and atmospheric conditions (ambient and N2) on the PL properties of a CsPbBr3 perovskite quantum dot (PQD) using single-particle spectroscopy. Despite the same PL blinking mechanism, the PL properties of the PQD were considerably affected by the environmental conditions. The charge trapping and detrapping rates of the PQD were lower and higher, respectively, under ambient atmosphere than under N2 owing to surface defect passivation by oxygen. The frequency and rate of PQD decomposition were higher in the PMMA matrix than in the PS matrix under an ambient atmosphere. PS achieved superior PQD encapsulation owing to its higher affinity toward hydrophobic surface ligands because of its aromatic rings, thereby protecting the PQD surface from moisture and thus inhibiting decomposition.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
期刊最新文献
Unravelling the Mechanical and Superconducting Properties in Borophene with Multicentered Bonds Schiff Base-Mediated Dual Active Site Catalyst for Efficient N-Formylation of Amines with CO2 Theoretical Investigation of Two-Dimensional FeC4 Structures with Surface Van Hove Singularity for Electrochemical Nitric Oxide Reduction Reaction ANI-1ccx-gelu Universal Interatomic Potential and Its Fine-Tuning: Toward Accurate and Efficient Anharmonic Vibrational Frequencies Unusual Inertness of a Ta8+ Cluster in Dinitrogen Reactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1