Quinoid Carbene Mediated C(sp2)‐Heteroatom Bond Formation

IF 2.5 3区 化学 Q2 CHEMISTRY, ORGANIC European Journal of Organic Chemistry Pub Date : 2025-02-24 DOI:10.1002/ejoc.202401282
Hongying Cheng , XiaoKun Wang , Kai Tan , Xiaoyu Ren , Zhen Guo , Chengming Wang , Cong‐Ying Zhou
{"title":"Quinoid Carbene Mediated C(sp2)‐Heteroatom Bond Formation","authors":"Hongying Cheng ,&nbsp;XiaoKun Wang ,&nbsp;Kai Tan ,&nbsp;Xiaoyu Ren ,&nbsp;Zhen Guo ,&nbsp;Chengming Wang ,&nbsp;Cong‐Ying Zhou","doi":"10.1002/ejoc.202401282","DOIUrl":null,"url":null,"abstract":"<div><div>C(sp<sup>2</sup>)‐heteroatom bonds play a critical role in biologically active molecules, pharmaceuticals, and functional materials. Traditional methods for synthesizing these bonds often rely on transition metal‐catalyzed cross‐coupling reactions, such as the Buchwald‐Hartwig and Ullmann reactions, which have limitations, including the requirement for elevated temperature and basic conditions. In recent years, diazo quinones have emerged as promising reagents for C(sp<sup>2</sup>)‐heteroatom bond formation due to their unique structural and reactive properties, which include high electrophilicity and a tendency toward aromatization. This review highlights recent advances in the use of quinoid carbenes, derived from diazo quinones, for the construction of C(sp<sup>2</sup>)−N, C(sp<sup>2</sup>)−O, and C(sp<sup>2</sup>)−S bonds. Key methodologies discussed include rhodium‐, iridium‐, ruthenium‐ and palladium‐catalyzed cross‐coupling reactions, heteroatom‐H bond insertion reactions, migration reactions and sigmatropic rearrangements. These methods offer mild, functional group‐tolerant alternatives to traditional approaches, showcasing their utility in the synthesis of complex bioactive molecules, medicinally relevant compounds, and materials.</div></div>","PeriodicalId":167,"journal":{"name":"European Journal of Organic Chemistry","volume":"28 8","pages":"Article e202401282"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1434193X2500043X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

C(sp2)‐heteroatom bonds play a critical role in biologically active molecules, pharmaceuticals, and functional materials. Traditional methods for synthesizing these bonds often rely on transition metal‐catalyzed cross‐coupling reactions, such as the Buchwald‐Hartwig and Ullmann reactions, which have limitations, including the requirement for elevated temperature and basic conditions. In recent years, diazo quinones have emerged as promising reagents for C(sp2)‐heteroatom bond formation due to their unique structural and reactive properties, which include high electrophilicity and a tendency toward aromatization. This review highlights recent advances in the use of quinoid carbenes, derived from diazo quinones, for the construction of C(sp2)−N, C(sp2)−O, and C(sp2)−S bonds. Key methodologies discussed include rhodium‐, iridium‐, ruthenium‐ and palladium‐catalyzed cross‐coupling reactions, heteroatom‐H bond insertion reactions, migration reactions and sigmatropic rearrangements. These methods offer mild, functional group‐tolerant alternatives to traditional approaches, showcasing their utility in the synthesis of complex bioactive molecules, medicinally relevant compounds, and materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
醌类碳烯介导的C(sp2)-杂原子键形成
C(sp2)-杂原子键在生物活性分子、药物和功能材料中发挥着重要作用。合成这些键的传统方法通常依赖于过渡金属催化的交叉偶联反应,如Buchwald-Hartwig和Ullmann反应,这些反应有局限性,包括对高温和基本条件的要求。近年来,重氮醌由于其独特的结构和反应性质,包括高亲电性和芳香化倾向,成为形成C(sp2)-杂原子键的有前途的试剂。本文综述了利用重氮醌衍生的类醌类化合物构建C(sp2)-N、C(sp2)-O和C(sp2)-S键的最新进展。讨论的主要方法包括铑,铱,钌和钯催化的交叉偶联反应,杂原子-氢键插入反应,迁移反应和异位重排。这些方法为传统方法提供了温和的、功能基团耐受的替代方法,展示了它们在合成复杂生物活性分子、医学相关化合物和材料方面的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.40
自引率
3.60%
发文量
752
审稿时长
1 months
期刊介绍: The European Journal of Organic Chemistry (2019 ISI Impact Factor 2.889) publishes Full Papers, Communications, and Minireviews from the entire spectrum of synthetic organic, bioorganic and physical-organic chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. The following journals have been merged to form two leading journals, the European Journal of Organic Chemistry and the European Journal of Inorganic Chemistry: Liebigs Annalen Bulletin des Sociétés Chimiques Belges Bulletin de la Société Chimique de France Gazzetta Chimica Italiana Recueil des Travaux Chimiques des Pays-Bas Anales de Química Chimika Chronika Revista Portuguesa de Química ACH—Models in Chemistry Polish Journal of Chemistry.
期刊最新文献
Blue-light-driven iron-catalyzed desulfurization of thioamides under hydrosilylation conditions Temperature-Dependent Regiodivergent Synthesis of Functionalized Maleimides and Itaconimides via in-situ Generated Pyridinium Ylide Photocarboxylation of Arylated 2H-Azirines Exploiting Continuous Flow Technology Recent Advances in Sustainable Total Synthesis and Chiral Pool Strategies with Emphasis on (−)‐Sclareol in Natural Products Synthesis Use of Real‐Time In‐Situ UV‐vis Spectrophotometry as a Tool for Monitoring Electrochemically‐Mediated Organic Synthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1