The Effects of Changing Environments, Abiotic Stresses, and Management Practices on Cropland Evapotranspiration: A Review

IF 25.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Reviews of Geophysics Pub Date : 2024-12-30 DOI:10.1029/2024rg000858
Rangjian Qiu, Gabriel G. Katul, Lu Zhang, Shunjing Qin, Xuelian Jiang
{"title":"The Effects of Changing Environments, Abiotic Stresses, and Management Practices on Cropland Evapotranspiration: A Review","authors":"Rangjian Qiu, Gabriel G. Katul, Lu Zhang, Shunjing Qin, Xuelian Jiang","doi":"10.1029/2024rg000858","DOIUrl":null,"url":null,"abstract":"The significance of crop evapotranspiration (ET<sub>a</sub>) to climate science, agronomic research, and water resources is not in dispute. What continues to draw attention is how variability in ET<sub>a</sub> is driven by changing environments, abiotic stresses, and management practices. Here, the impacts of elevated CO<sub>2</sub> concentration (e[CO<sub>2</sub>]), elevated ozone concentration (e[O<sub>3</sub>]), warming, abiotic stresses (water, salinity, heat stresses), and management practices (planting density, irrigation methods, mulching, nitrogen application) on cropland ET<sub>a</sub> were reviewed, along with their possible causes and estimation. Water and salinity stresses, e[O<sub>3</sub>], and drip irrigation adoption generally led to lower total growing–season ET<sub>a</sub>. However, total growing–season ET<sub>a</sub> responses to e[CO<sub>2</sub>], warming, heat stress, mulching, planting density, and nitrogen supplement appear inconsistent across empirical studies. The effects of e[CO<sub>2</sub>], e[O<sub>3</sub>], water and salinity stresses on total growing–season ET<sub>a</sub> are attributed to their influence on stomatal conductance, root water uptake, root and leaf area development, microclimate, and potentially phenology. Total growing–season ET<sub>a</sub> in response to warming is affected by variations in ambient growing–season mean air temperature and phenology. The differences in crop ET<sub>a</sub> under varying planting densities are due to their differences in leaf area. The responses of ET<sub>a</sub> to heat stress, mulching, and nitrogen application represent trade–off between their opposite effects on transpiration and evaporation, along with possibly phenology. Modified ET<sub>a</sub> models currently in use can estimate the response of ET<sub>a</sub> to the many aforementioned factors except for e[O<sub>3</sub>], heat stress, and nitrogen application. These factors offer a blueprint for future research inquiries.","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"15 1","pages":""},"PeriodicalIF":25.2000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024rg000858","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The significance of crop evapotranspiration (ETa) to climate science, agronomic research, and water resources is not in dispute. What continues to draw attention is how variability in ETa is driven by changing environments, abiotic stresses, and management practices. Here, the impacts of elevated CO2 concentration (e[CO2]), elevated ozone concentration (e[O3]), warming, abiotic stresses (water, salinity, heat stresses), and management practices (planting density, irrigation methods, mulching, nitrogen application) on cropland ETa were reviewed, along with their possible causes and estimation. Water and salinity stresses, e[O3], and drip irrigation adoption generally led to lower total growing–season ETa. However, total growing–season ETa responses to e[CO2], warming, heat stress, mulching, planting density, and nitrogen supplement appear inconsistent across empirical studies. The effects of e[CO2], e[O3], water and salinity stresses on total growing–season ETa are attributed to their influence on stomatal conductance, root water uptake, root and leaf area development, microclimate, and potentially phenology. Total growing–season ETa in response to warming is affected by variations in ambient growing–season mean air temperature and phenology. The differences in crop ETa under varying planting densities are due to their differences in leaf area. The responses of ETa to heat stress, mulching, and nitrogen application represent trade–off between their opposite effects on transpiration and evaporation, along with possibly phenology. Modified ETa models currently in use can estimate the response of ETa to the many aforementioned factors except for e[O3], heat stress, and nitrogen application. These factors offer a blueprint for future research inquiries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Reviews of Geophysics
Reviews of Geophysics 地学-地球化学与地球物理
CiteScore
50.30
自引率
0.80%
发文量
28
审稿时长
12 months
期刊介绍: Geophysics Reviews (ROG) offers comprehensive overviews and syntheses of current research across various domains of the Earth and space sciences. Our goal is to present accessible and engaging reviews that cater to the diverse AGU community. While authorship is typically by invitation, we warmly encourage readers and potential authors to share their suggestions with our editors.
期刊最新文献
The Influence of Topography on the Global Terrestrial Water Cycle The Impacts of Erosion on the Carbon Cycle The Effects of Changing Environments, Abiotic Stresses, and Management Practices on Cropland Evapotranspiration: A Review Coastal Flooding in Asian Megadeltas: Recent Advances, Persistent Challenges, and Call for Actions Amidst Local and Global Changes Short-Lived Air Pollutants and Climate Forcers Through the Lens of the COVID-19 Pandemic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1