Chuanli Yu, Weijia Zeng, Bingjie Wang, Xuwei Cui, Zhida Gao, Jun Yin, Luqi Liu, Xianlong Wei, Yueguang Wei, Zhaohe Dai
{"title":"Stiffer Is Stickier: Adhesion in Elastic Nanofilms","authors":"Chuanli Yu, Weijia Zeng, Bingjie Wang, Xuwei Cui, Zhida Gao, Jun Yin, Luqi Liu, Xianlong Wei, Yueguang Wei, Zhaohe Dai","doi":"10.1021/acs.nanolett.4c05309","DOIUrl":null,"url":null,"abstract":"When two objects are brought into contact, separating them typically requires overcoming a detachment force. While this adhesion-induced force is vital for thin film materials in a range of nature and engineering systems, its quantitative understanding remains elusive due to the complex interplay between nonlinear deformation and adhesion. Here we perform controlled experiments and develop formal theories for the detachment force in a canonical configuration: separation of a sphere from an elastic graphene film. We observe that applying tension to the film can increase both its apparent out-of-plane stiffness and its detachment force, a behavior that cannot be explained by macroscopic adhesion theories. We attribute this unusual “stiffer-stickier” behavior to long-range intermolecular forces and demonstrate that it is a general phenomenon for elastic nanofilms, explainable through a multiscale theory that we develop. The ideas introduced here offer a generic strategy to understand the adhesion of slender structures across various length scales.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"13 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c05309","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
When two objects are brought into contact, separating them typically requires overcoming a detachment force. While this adhesion-induced force is vital for thin film materials in a range of nature and engineering systems, its quantitative understanding remains elusive due to the complex interplay between nonlinear deformation and adhesion. Here we perform controlled experiments and develop formal theories for the detachment force in a canonical configuration: separation of a sphere from an elastic graphene film. We observe that applying tension to the film can increase both its apparent out-of-plane stiffness and its detachment force, a behavior that cannot be explained by macroscopic adhesion theories. We attribute this unusual “stiffer-stickier” behavior to long-range intermolecular forces and demonstrate that it is a general phenomenon for elastic nanofilms, explainable through a multiscale theory that we develop. The ideas introduced here offer a generic strategy to understand the adhesion of slender structures across various length scales.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.