Extension of Dowell and Semi-Analytical Homogenization Methods for Time-Domain Analysis of Magnetic Devices

IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Magnetics Pub Date : 2024-11-14 DOI:10.1109/TMAG.2024.3498010
Hajime Igarashi;Qiao Liu;Shuli Yin
{"title":"Extension of Dowell and Semi-Analytical Homogenization Methods for Time-Domain Analysis of Magnetic Devices","authors":"Hajime Igarashi;Qiao Liu;Shuli Yin","doi":"10.1109/TMAG.2024.3498010","DOIUrl":null,"url":null,"abstract":"This article extends the Dowell method and the semi-analytical homogenization method to analyze copper losses in a magnetic device in the time domain. The main contribution of this work is that the impedances provided by the Dowell method and the complex permeability resulting from the homogenization method are represented by the continued fractions and corresponding Cauer equivalent circuits, with which the time-domain analysis can be effectively performed. The transient waveforms of the copper loss computed by the equivalent circuit, in which the original leakage inductance is extended to a Cauer circuit, are shown to be in good agreement with those computed by the finite element method. It is also shown that the Dowell method is valid only for the 1-D magnetic field over the winding region, while the homogenization method is valid even when this assumption does not hold.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 1","pages":"1-9"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Magnetics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10753062/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article extends the Dowell method and the semi-analytical homogenization method to analyze copper losses in a magnetic device in the time domain. The main contribution of this work is that the impedances provided by the Dowell method and the complex permeability resulting from the homogenization method are represented by the continued fractions and corresponding Cauer equivalent circuits, with which the time-domain analysis can be effectively performed. The transient waveforms of the copper loss computed by the equivalent circuit, in which the original leakage inductance is extended to a Cauer circuit, are shown to be in good agreement with those computed by the finite element method. It is also shown that the Dowell method is valid only for the 1-D magnetic field over the winding region, while the homogenization method is valid even when this assumption does not hold.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁器件时域分析的Dowell推广及半解析均匀化方法
本文扩展了道威尔法和半解析均匀化法,在时域上分析磁性器件中的铜损耗。本工作的主要贡献是将道威尔法提供的阻抗和均匀化法得到的复磁导率用连分式和相应的Cauer等效电路表示,从而可以有效地进行时域分析。用等效电路计算的铜损耗瞬态波形与有限元法计算的结果吻合较好,其中原漏感扩展到科埃尔电路。本文还证明了道威尔方法仅对线圈上的一维磁场有效,而均匀化方法即使在该假设不成立的情况下也是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Magnetics
IEEE Transactions on Magnetics 工程技术-工程:电子与电气
CiteScore
4.00
自引率
14.30%
发文量
565
审稿时长
4.1 months
期刊介绍: Science and technology related to the basic physics and engineering of magnetism, magnetic materials, applied magnetics, magnetic devices, and magnetic data storage. The IEEE Transactions on Magnetics publishes scholarly articles of archival value as well as tutorial expositions and critical reviews of classical subjects and topics of current interest.
期刊最新文献
2024 Index IEEE Transactions on Magnetics Vol. 60 Introducing IEEE Collabratec Front Cover Table of Contents Member Get-A-Member (MGM) Program
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1