Low Complexity Gain-Phase Error Correction for Adaptive Underdetermined DOA Estimation in Sensor Arrays

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Letters Pub Date : 2024-12-19 DOI:10.1109/LSENS.2024.3520524
Shouharda Ghosh;Nithin George
{"title":"Low Complexity Gain-Phase Error Correction for Adaptive Underdetermined DOA Estimation in Sensor Arrays","authors":"Shouharda Ghosh;Nithin George","doi":"10.1109/LSENS.2024.3520524","DOIUrl":null,"url":null,"abstract":"Direction of arrival (DOA) estimation techniques are essential for determining the locations of signal sources using sensor arrays. For a uniform linear array, the number of detectable sources is limited to one less than the number of sensors. Sparse linear arrays overcome this limitation by leveraging the difference array to estimate more sources than sensors. However, gain and phase mismatches among sensors can impair accuracy. Existing algorithms to correct these mismatches are computationally demanding, making them unsuitable for low-power Internet-of-Things (IoT) devices. This article proposes a novel method to integrate gain-phase compensation into adaptive filtering-based DOA estimation algorithms. The proposed approach reduces computational complexity and improves performance, especially in low SNR and low snapshot scenarios, facilitating efficient deployment in low-power devices.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 1","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10807838/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Direction of arrival (DOA) estimation techniques are essential for determining the locations of signal sources using sensor arrays. For a uniform linear array, the number of detectable sources is limited to one less than the number of sensors. Sparse linear arrays overcome this limitation by leveraging the difference array to estimate more sources than sensors. However, gain and phase mismatches among sensors can impair accuracy. Existing algorithms to correct these mismatches are computationally demanding, making them unsuitable for low-power Internet-of-Things (IoT) devices. This article proposes a novel method to integrate gain-phase compensation into adaptive filtering-based DOA estimation algorithms. The proposed approach reduces computational complexity and improves performance, especially in low SNR and low snapshot scenarios, facilitating efficient deployment in low-power devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
传感器阵列自适应欠定DOA估计的低复杂度增益相位误差校正
到达方向(DOA)估计技术是利用传感器阵列确定信号源位置的关键。对于均匀线性阵列,可检测源的数量限制在比传感器数量少一个。稀疏线性阵列通过利用差分阵列来估计比传感器更多的源,从而克服了这一限制。然而,传感器之间的增益和相位不匹配会影响精度。纠正这些不匹配的现有算法在计算上要求很高,因此不适合低功耗物联网(IoT)设备。提出了一种将增益相位补偿集成到基于自适应滤波的DOA估计算法中的新方法。该方法降低了计算复杂度,提高了性能,特别是在低信噪比和低快照场景下,便于在低功耗设备中高效部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
期刊最新文献
Table of Contents Front Cover IEEE Sensors Council Information IEEE Sensors Letters Subject Categories for Article Numbering Information IEEE Sensors Letters Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1