{"title":"Transponder Aggregator for CDC-ROADM Nodes Supporting S-U Bands and 32/64-WDM Ports","authors":"Keita Yamaguchi;Kenya Suzuki;Osamu Moriwaki","doi":"10.1109/JPHOT.2024.3520988","DOIUrl":null,"url":null,"abstract":"In response to the rapid growth in traffic, the throughput and handling unit size of optical network nodes have been increasing at a rate of approximately ten times per decade. To achieve such high node throughputs, it is important to expand the wavelength bandwidth and support more WDM fibers. Therefore, the transponder aggregator (TPA) that provides the colorless, directionless, and contentionless (CDC) function of the network node also needs to respond to these changes. As a TPA suitable for such ultra-high throughput reconfigurable optical add/drop multiplexing (ROADM) nodes, we propose a multicast switch (MCS) that consists of 1 × N splitters and M × 1 switches facing each other and utilizes a silica-based planar lightwave circuit (PLC) platform. The CDC-ROADM nodes have a trade-off between the number of connected WDM fibers and the number of transponders that can be accommodated by a single TPA. Therefore, increasing the WDM fibers results in a decrease in the transponders that can be accommodated by a single MCS, but at the same time reduces the splitting loss in that switch. As a result, the number of optical amplifiers used for add/drop functions can be reduced. In addition, because the handling unit is larger, the increase in the number of required MCS units is limited, and highly integrated PLC-based MCSs become practical. In this paper, we demonstrate MCSs supporting 300-nm bandwidth and 32- and 64-degree nodes for the first time ever. The insertion loss of the prototype was less than 8.0 dB in all paths, including connections with common single-mode fiber, and the extinction ratio was greater than 40 dB.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"17 1","pages":"1-7"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10812056","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10812056/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In response to the rapid growth in traffic, the throughput and handling unit size of optical network nodes have been increasing at a rate of approximately ten times per decade. To achieve such high node throughputs, it is important to expand the wavelength bandwidth and support more WDM fibers. Therefore, the transponder aggregator (TPA) that provides the colorless, directionless, and contentionless (CDC) function of the network node also needs to respond to these changes. As a TPA suitable for such ultra-high throughput reconfigurable optical add/drop multiplexing (ROADM) nodes, we propose a multicast switch (MCS) that consists of 1 × N splitters and M × 1 switches facing each other and utilizes a silica-based planar lightwave circuit (PLC) platform. The CDC-ROADM nodes have a trade-off between the number of connected WDM fibers and the number of transponders that can be accommodated by a single TPA. Therefore, increasing the WDM fibers results in a decrease in the transponders that can be accommodated by a single MCS, but at the same time reduces the splitting loss in that switch. As a result, the number of optical amplifiers used for add/drop functions can be reduced. In addition, because the handling unit is larger, the increase in the number of required MCS units is limited, and highly integrated PLC-based MCSs become practical. In this paper, we demonstrate MCSs supporting 300-nm bandwidth and 32- and 64-degree nodes for the first time ever. The insertion loss of the prototype was less than 8.0 dB in all paths, including connections with common single-mode fiber, and the extinction ratio was greater than 40 dB.
期刊介绍:
Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.