The geomagnetic storm time responses of the TEC, foF2, and hmF2 in different solar activity during solar cycle 24 and 25

IF 1.6 4区 地球科学 Q3 ASTRONOMY & ASTROPHYSICS Radio Science Pub Date : 2024-12-31 DOI:10.1029/2024RS007961
Yekoye Asmare Tariku
{"title":"The geomagnetic storm time responses of the TEC, foF2, and hmF2 in different solar activity during solar cycle 24 and 25","authors":"Yekoye Asmare Tariku","doi":"10.1029/2024RS007961","DOIUrl":null,"url":null,"abstract":"This paper mainly examines the response of variation of the TEC, foF2, and hmF2 obtained from observations (GPS and digisondes) and models (IRI 2016 and IRI-Plas 2017) across low-to-high latitudes during various geomagnetic storm time conditions in different solar activity years. The 19 February 2014, 17 March 2015, and 4 November 2021 geomagnetic storm cases caused positive storm effects (particularly at low latitudes), while the 8 September 2017, and 26 August 2018 geomagnetic storm cases resulted in negative storm effects, especially at mid and high latitudes. Furthermore, during the 19 February 2014 storm, the sharp increase (peak) diurnal digisondes TEC values are observed, on average, when the hmF2 values reach about 360, 282, and 312 km, in the low, mid and high latitudes, respectively. During the 26 August 2018 storm, the peak TEC values are observed, on average, when the hmF2 values reach about 313, 258, and 268 km in the low, mid and high latitudes, respectively. Hence, the digisonde-derived peak TEC in mid latitudes typically coincides with a decrease in hmF2, while in low latitudes, it is associated with an increase in hmF2. Additionally, during low solar activity periods, digisonde-derived peak TEC values were observed when hmF2 decreased, contrasting with patterns seen during high solar activity. Both the IRI 2016 and IRI-Plas 2017 models performed well, with the models peak TEC values being observed when the hmF2 variations attain similar values with the observations, reinforcing the models' reliability in capturing ionospheric responses during geomagnetic storms.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"59 12","pages":"1-18"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radio Science","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10819313/","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper mainly examines the response of variation of the TEC, foF2, and hmF2 obtained from observations (GPS and digisondes) and models (IRI 2016 and IRI-Plas 2017) across low-to-high latitudes during various geomagnetic storm time conditions in different solar activity years. The 19 February 2014, 17 March 2015, and 4 November 2021 geomagnetic storm cases caused positive storm effects (particularly at low latitudes), while the 8 September 2017, and 26 August 2018 geomagnetic storm cases resulted in negative storm effects, especially at mid and high latitudes. Furthermore, during the 19 February 2014 storm, the sharp increase (peak) diurnal digisondes TEC values are observed, on average, when the hmF2 values reach about 360, 282, and 312 km, in the low, mid and high latitudes, respectively. During the 26 August 2018 storm, the peak TEC values are observed, on average, when the hmF2 values reach about 313, 258, and 268 km in the low, mid and high latitudes, respectively. Hence, the digisonde-derived peak TEC in mid latitudes typically coincides with a decrease in hmF2, while in low latitudes, it is associated with an increase in hmF2. Additionally, during low solar activity periods, digisonde-derived peak TEC values were observed when hmF2 decreased, contrasting with patterns seen during high solar activity. Both the IRI 2016 and IRI-Plas 2017 models performed well, with the models peak TEC values being observed when the hmF2 variations attain similar values with the observations, reinforcing the models' reliability in capturing ionospheric responses during geomagnetic storms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Radio Science
Radio Science 工程技术-地球化学与地球物理
CiteScore
3.30
自引率
12.50%
发文量
112
审稿时长
1 months
期刊介绍: Radio Science (RDS) publishes original scientific contributions on radio-frequency electromagnetic-propagation and its applications. Contributions covering measurement, modelling, prediction and forecasting techniques pertinent to fields and waves - including antennas, signals and systems, the terrestrial and space environment and radio propagation problems in radio astronomy - are welcome. Contributions may address propagation through, interaction with, and remote sensing of structures, geophysical media, plasmas, and materials, as well as the application of radio frequency electromagnetic techniques to remote sensing of the Earth and other bodies in the solar system.
期刊最新文献
The geomagnetic storm time responses of the TEC, foF2, and hmF2 in different solar activity during solar cycle 24 and 25 Optimization of variational mode decomposition using stationary wavelet transform and its application to transient electromagnetic signal noise reduction Efficient storage of embedded element patterns for low frequency radio telescopes Finite element method modeling of the wire thickness of a monopole on a circular ground plane The impact and sources of radio frequency interference on GNSS signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1