{"title":"Predictive Sampling in Image Sensing for Sparse Image Processing","authors":"Amin Biglari;Qisong Hu;Wei Tang","doi":"10.1109/LSENS.2024.3520408","DOIUrl":null,"url":null,"abstract":"In this letter, we present a pixel-level predictive sampling method for image sensing and processing to reduce the computing overhead for power-limited image sensing systems. The predictive sampling method scans through rows and columns to identify the location and value of the critical pixels, which are the turning points in the row and column arrays. The prediction is performed using the value of prior pixels and a predefined error threshold. When the prediction is successful, the pixel is marked as a noncritical pixel and is skipped for recording and processing. Only the critical pixels are selected for further processing. We proposed reconstruction methods that recover the raw image from the selected critical pixels using interpolation. The experimental results show that the proposed method can reduce the data throughput by 72% with an error of 1.6% for sparse images. The convolutional neural network model applied with this method can achieve a similar detection accuracy in a standard method while only using 27.1% of data size.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 1","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10807834/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this letter, we present a pixel-level predictive sampling method for image sensing and processing to reduce the computing overhead for power-limited image sensing systems. The predictive sampling method scans through rows and columns to identify the location and value of the critical pixels, which are the turning points in the row and column arrays. The prediction is performed using the value of prior pixels and a predefined error threshold. When the prediction is successful, the pixel is marked as a noncritical pixel and is skipped for recording and processing. Only the critical pixels are selected for further processing. We proposed reconstruction methods that recover the raw image from the selected critical pixels using interpolation. The experimental results show that the proposed method can reduce the data throughput by 72% with an error of 1.6% for sparse images. The convolutional neural network model applied with this method can achieve a similar detection accuracy in a standard method while only using 27.1% of data size.