EV and PV are Booming, but is the Grid Ready to Coordinate them?

iEnergy Pub Date : 2024-12-09 DOI:10.23919/IEN.2024.0023
Innocent Kamwa;Hajar Abdolahinia
{"title":"EV and PV are Booming, but is the Grid Ready to Coordinate them?","authors":"Innocent Kamwa;Hajar Abdolahinia","doi":"10.23919/IEN.2024.0023","DOIUrl":null,"url":null,"abstract":"In this era of deep decarbonization, when the new mantra is green energy everywhere, can we find ourselves in a situation where we have too much green energy? Believe it or not, this is the energy paradox faced by Australia on October 3, 2024. The proliferation of photovoltaic panels on roofs is causing an over-production of electricity, threatening the grid's stability. On that day, the peak of solar energy reached a record level, far exceeding the expected consumption level. As a result, the electric load vanished, and the total demand seen by the dispatch center crossed the dangerous low limit set to ensure network stability. In Victoria, one of the wealthiest states in Australia, the electricity system is designed for demand ranging from 1,865 to 10,000 megawatts, with a typical average of 5,000 megawatts. But on Saturday, 3 October, the market fell to a record low of 1,352 megawatts. This unprecedented situation has put the electricity grid under immense pressure. While not resulting in a widespread blackout, it demonstrates the urgent need to adapt energy infrastructure and policies. Solutions such as cost-effective large-scale battery storage or virtual power plants improving the capacity to manage excess solar energy are urgently needed. Other countries, notably California, have experienced similar challenges, illustrated by the “Duck curve” (see Figure 1). The most straightforward mitigation means to “dump” the excess PV energy by capping their production, which amounts to increasing their total cost of ownership and lost opportunity for deeper decarbonization.","PeriodicalId":100648,"journal":{"name":"iEnergy","volume":"3 4","pages":"187-188"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10787156","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iEnergy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10787156/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this era of deep decarbonization, when the new mantra is green energy everywhere, can we find ourselves in a situation where we have too much green energy? Believe it or not, this is the energy paradox faced by Australia on October 3, 2024. The proliferation of photovoltaic panels on roofs is causing an over-production of electricity, threatening the grid's stability. On that day, the peak of solar energy reached a record level, far exceeding the expected consumption level. As a result, the electric load vanished, and the total demand seen by the dispatch center crossed the dangerous low limit set to ensure network stability. In Victoria, one of the wealthiest states in Australia, the electricity system is designed for demand ranging from 1,865 to 10,000 megawatts, with a typical average of 5,000 megawatts. But on Saturday, 3 October, the market fell to a record low of 1,352 megawatts. This unprecedented situation has put the electricity grid under immense pressure. While not resulting in a widespread blackout, it demonstrates the urgent need to adapt energy infrastructure and policies. Solutions such as cost-effective large-scale battery storage or virtual power plants improving the capacity to manage excess solar energy are urgently needed. Other countries, notably California, have experienced similar challenges, illustrated by the “Duck curve” (see Figure 1). The most straightforward mitigation means to “dump” the excess PV energy by capping their production, which amounts to increasing their total cost of ownership and lost opportunity for deeper decarbonization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电动汽车和光伏正在蓬勃发展,但电网准备好协调它们了吗?
在这个深度脱碳的时代,当新的口号是绿色能源无处不在时,我们是否会发现自己处于绿色能源过剩的境地?信不信由你,这就是澳大利亚在2024年10月3日面临的能源悖论。屋顶上光伏板的激增导致电力生产过剩,威胁到电网的稳定性。当天,太阳能的峰值达到了创纪录的水平,远远超过了预期的消费水平。结果,电力负荷消失,调度中心看到的总需求超过了为保证电网稳定而设定的危险下限。维多利亚州是澳大利亚最富有的州之一,其电力系统的设计需求范围从1865兆瓦到10000兆瓦,典型的平均需求为5000兆瓦。但在10月3日星期六,市场跌至1352兆瓦的历史低点。这种前所未有的情况给电网带来了巨大的压力。虽然没有导致大范围的停电,但它表明迫切需要调整能源基础设施和政策。迫切需要具有成本效益的大规模电池存储或虚拟发电厂等解决方案,以提高管理过剩太阳能的能力。其他国家,尤其是加州,也经历了类似的挑战,如图1所示为“鸭子曲线”(见图1)。最直接的缓解措施是通过限制光伏发电的产量来“倾销”过剩的光伏发电,这相当于增加光伏发电的总拥有成本,并失去了进一步脱碳的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contents Front Cover Methods of Suppressing Ion Migration in n-i-p Perovskite Solar Cells Artificial Intelligence Techniques for Stability Analysis in Modern Power Systems Intelligent Adjustment for Power System Operation Mode Based on Deep Reinforcement Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1