{"title":"Finite element method modeling of the wire thickness of a monopole on a circular ground plane","authors":"C. G. Hynes;R. G. Vaughan","doi":"10.1029/2024RS008068","DOIUrl":null,"url":null,"abstract":"Simulations and measurements of the input impedance and matching of a cylindrical monopole at the center of a circular ground plane are presented. The design parameters are the monopole length (0.231 to 0.261), the monopole radius (10\n<sup>−5</sup>\nλ to 5 × 10\n<sup>−3</sup>\nλ), and the ground plane radius (0.2λ to 2.0λ), where λ is the wavelength. Using new numerical results from the Finite Element Method (FEM), previous theoretical impedance results for an infinitesimally thin element are shown to be inaccurate for monopoles of practical thicknesses since there can be a strong dependence on the wire thickness—even for electrically very thin wires. The FEM offers convenient modeling for the wire thickness and the results match well with physical experiments. To obtain good antenna impedance matching to a 50 Ω impedance, that is, 5\n<inf>11</inf>\n < — 10 dB, for any ground plane radius greater than 1/2 (an arbitrary lower bound) and any practical wire monopole radius, the simulations show that a monopole length of 0.241 can be used.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"59 12","pages":"1-10"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radio Science","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10819311/","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Simulations and measurements of the input impedance and matching of a cylindrical monopole at the center of a circular ground plane are presented. The design parameters are the monopole length (0.231 to 0.261), the monopole radius (10
−5
λ to 5 × 10
−3
λ), and the ground plane radius (0.2λ to 2.0λ), where λ is the wavelength. Using new numerical results from the Finite Element Method (FEM), previous theoretical impedance results for an infinitesimally thin element are shown to be inaccurate for monopoles of practical thicknesses since there can be a strong dependence on the wire thickness—even for electrically very thin wires. The FEM offers convenient modeling for the wire thickness and the results match well with physical experiments. To obtain good antenna impedance matching to a 50 Ω impedance, that is, 5
11
< — 10 dB, for any ground plane radius greater than 1/2 (an arbitrary lower bound) and any practical wire monopole radius, the simulations show that a monopole length of 0.241 can be used.
期刊介绍:
Radio Science (RDS) publishes original scientific contributions on radio-frequency electromagnetic-propagation and its applications. Contributions covering measurement, modelling, prediction and forecasting techniques pertinent to fields and waves - including antennas, signals and systems, the terrestrial and space environment and radio propagation problems in radio astronomy - are welcome. Contributions may address propagation through, interaction with, and remote sensing of structures, geophysical media, plasmas, and materials, as well as the application of radio frequency electromagnetic techniques to remote sensing of the Earth and other bodies in the solar system.