Solid lipid nanoparticles for increased oral bioavailability of acalabrutinib in chronic lymphocytic leukaemia

IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanoscale Research Letters Pub Date : 2024-12-30 DOI:10.1186/s11671-024-04157-8
Swagata Sinha, Punna Rao Ravi, Makarand Somvanshi, S. R. Rashmi
{"title":"Solid lipid nanoparticles for increased oral bioavailability of acalabrutinib in chronic lymphocytic leukaemia","authors":"Swagata Sinha,&nbsp;Punna Rao Ravi,&nbsp;Makarand Somvanshi,&nbsp;S. R. Rashmi","doi":"10.1186/s11671-024-04157-8","DOIUrl":null,"url":null,"abstract":"<div><p>Acalabrutinib (ACP) is a first-line treatment for chronic lymphocytic leukemia but suffers from poor and variable oral bioavailability due to its pH-dependent solubility, CYP3A4 metabolism, and P-gp efflux. Thus, the objective of this study was to improve the solubility and dissolution behaviour, in turn enhancing bioavailability, by formulating solid lipid nanoparticles (SLNs). ACP loaded SLNs (ACP-SLNs) were prepared via solvent-free hot emulsification followed by a double sonication process. A combination of glyceryl di-behenate and stearyl palmitate along with Tween 80 was used as the lipid phase to dissolve ACP. A 1% w/v Poloxomer188 solution served as the aqueous phase. The optimized ACP-SLNs were spherical in shape and had particle size of 234.7–257.5 nm, PDI of 0.261–0.320 and loading efficiency of 18.70 ± 1.78%. A typical biphasic release pattern was observed from ACP-SLNs in the in vitro dissolution studies under gastrointestinal and plasma pH conditions (&gt; 90% drug release at pH 4.5 ± 0.2, 6.8 ± 0.2 (representing GIT), and 7.4 ± 0.2 (representing plasma) at 8, 16 and 24 h, respectively). The freeze-dried product was stable when stored at 5 °C for over 6 months. Compared with the bulk drug suspension, the ACP-SLNs suspension resulted in 2.29-fold increase in oral bioavailability and more importantly 2.46-fold increase in the distribution of drug to spleen. Additionally, inhibition of lymph production and flow by administering cycloheximide resulted in 46.01% decrease in the overall absorption of ACP-SLNs, indicating the significance of lymphatic uptake process in the oral absorption of ACP-SLNs.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"19 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-024-04157-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-024-04157-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Acalabrutinib (ACP) is a first-line treatment for chronic lymphocytic leukemia but suffers from poor and variable oral bioavailability due to its pH-dependent solubility, CYP3A4 metabolism, and P-gp efflux. Thus, the objective of this study was to improve the solubility and dissolution behaviour, in turn enhancing bioavailability, by formulating solid lipid nanoparticles (SLNs). ACP loaded SLNs (ACP-SLNs) were prepared via solvent-free hot emulsification followed by a double sonication process. A combination of glyceryl di-behenate and stearyl palmitate along with Tween 80 was used as the lipid phase to dissolve ACP. A 1% w/v Poloxomer188 solution served as the aqueous phase. The optimized ACP-SLNs were spherical in shape and had particle size of 234.7–257.5 nm, PDI of 0.261–0.320 and loading efficiency of 18.70 ± 1.78%. A typical biphasic release pattern was observed from ACP-SLNs in the in vitro dissolution studies under gastrointestinal and plasma pH conditions (> 90% drug release at pH 4.5 ± 0.2, 6.8 ± 0.2 (representing GIT), and 7.4 ± 0.2 (representing plasma) at 8, 16 and 24 h, respectively). The freeze-dried product was stable when stored at 5 °C for over 6 months. Compared with the bulk drug suspension, the ACP-SLNs suspension resulted in 2.29-fold increase in oral bioavailability and more importantly 2.46-fold increase in the distribution of drug to spleen. Additionally, inhibition of lymph production and flow by administering cycloheximide resulted in 46.01% decrease in the overall absorption of ACP-SLNs, indicating the significance of lymphatic uptake process in the oral absorption of ACP-SLNs.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters 工程技术-材料科学:综合
CiteScore
11.30
自引率
0.00%
发文量
110
审稿时长
48 days
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
期刊最新文献
Antimicrobial membranes based on polycaprolactone:pectin blends reinforced with zeolite faujasite for cloxacillin-controlled release Integration of silver nanostructures in wireless sensor networks for enhanced biochemical sensing Crystal growth, structural phase transitions and optical gap evolution of FAPb(Br1-xClx)3 hybrid perovskites (FA: formamidinium ion, CH(NH2)2+) Insights into semi-continuous synthesis of iron oxide nanoparticles (IONPs) via thermal decomposition of iron oleate Studies on the electrical and optical conductivity of barium-nickel ferrite nanoparticles doped with Zn
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1