Distributed hybrid energy storage photovoltaic microgrid control based on MPPT algorithm and equilibrium control strategy

Q2 Energy Energy Informatics Pub Date : 2024-12-31 DOI:10.1186/s42162-024-00454-9
Yanlong Qi, Rui Liu, Haisheng Lin, Junchen Zhong, Zhen Chen
{"title":"Distributed hybrid energy storage photovoltaic microgrid control based on MPPT algorithm and equilibrium control strategy","authors":"Yanlong Qi,&nbsp;Rui Liu,&nbsp;Haisheng Lin,&nbsp;Junchen Zhong,&nbsp;Zhen Chen","doi":"10.1186/s42162-024-00454-9","DOIUrl":null,"url":null,"abstract":"<div><p>With the rapid advancement of the new energy transformation process, the stability of photovoltaic microgrid output is particularly important. However, current photovoltaic microgrids suffer from unstable output and power fluctuations. To improve the stability and system controllability of photovoltaic microgrid output, this study constructs an optimized grey wolf optimization algorithm. Using the idea of small step perturbation, it is applied to the maximum power point tracking solar controller to construct a maximum power point controller algorithm based on the improved algorithm. Secondly, the algorithm is combined with photovoltaic arrays to construct a maximum tracking point control system for photovoltaic arrays based on the algorithm. Finally, the system is combined with low-pass filtering power allocation and secondary power allocation strategies, as well as a hybrid storage system, to construct a photovoltaic microgrid control model. In the performance comparison analysis of the research algorithm, the average accuracy and average loss value of the algorithm were 98.2% and 0.15, respectively, which were significantly better than the compared algorithms. The performance analysis of the photovoltaic microgrid control model showed that the model could effectively regulate and control the output power of the microgrid under two operating conditions, demonstrating its effectiveness. The above results indicate that The proposed algorithm and the improved algorithm of the PV microgrid control model can not only improve the steady-state tracking accuracy, but also have better dynamic performance and improve the tracking speed. The control strategy can maintain the operational stability of the microgrid system and realize the smooth switching control of each mode, meeting the stability and flexibility requirements of the PV microgrid system. The novelty of this study is that the improved Grey Wolf optimization algorithm enhances the global search ability by introducing the random jump mechanism of Levy flight algorithm and the combination of particle swarm optimization algorithm and Grey Wolf optimization algorithm to avoid falling into the local optimal. The randomness and ergodicity of Levy flight algorithm enable the hybrid algorithm to quickly adapt to the changes of light intensity and environmental conditions, and maintain the efficient operation of MPPT. Moreover, particle swarm optimization has strong local search ability, and gray Wolf optimization improves local search accuracy. The combination of the two improves local search accuracy. By combining the characteristics of Levy flight algorithm, the parameters of PSO and GWO algorithm, such as inertia weight and convergence factor, are dynamically adjusted to adapt to different working conditions of MPPT. The optimal solution is output as the optimal strategy of MPPT through collaboration. The potential practical impact is that the improved MPPT control strategy can track the maximum power point more effectively, improve the efficiency and stability of the photovoltaic power generation system, reduce energy waste by improving the tracking accuracy and convergence speed of the photovoltaic system, and improve the robustness of the system.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-024-00454-9","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-024-00454-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid advancement of the new energy transformation process, the stability of photovoltaic microgrid output is particularly important. However, current photovoltaic microgrids suffer from unstable output and power fluctuations. To improve the stability and system controllability of photovoltaic microgrid output, this study constructs an optimized grey wolf optimization algorithm. Using the idea of small step perturbation, it is applied to the maximum power point tracking solar controller to construct a maximum power point controller algorithm based on the improved algorithm. Secondly, the algorithm is combined with photovoltaic arrays to construct a maximum tracking point control system for photovoltaic arrays based on the algorithm. Finally, the system is combined with low-pass filtering power allocation and secondary power allocation strategies, as well as a hybrid storage system, to construct a photovoltaic microgrid control model. In the performance comparison analysis of the research algorithm, the average accuracy and average loss value of the algorithm were 98.2% and 0.15, respectively, which were significantly better than the compared algorithms. The performance analysis of the photovoltaic microgrid control model showed that the model could effectively regulate and control the output power of the microgrid under two operating conditions, demonstrating its effectiveness. The above results indicate that The proposed algorithm and the improved algorithm of the PV microgrid control model can not only improve the steady-state tracking accuracy, but also have better dynamic performance and improve the tracking speed. The control strategy can maintain the operational stability of the microgrid system and realize the smooth switching control of each mode, meeting the stability and flexibility requirements of the PV microgrid system. The novelty of this study is that the improved Grey Wolf optimization algorithm enhances the global search ability by introducing the random jump mechanism of Levy flight algorithm and the combination of particle swarm optimization algorithm and Grey Wolf optimization algorithm to avoid falling into the local optimal. The randomness and ergodicity of Levy flight algorithm enable the hybrid algorithm to quickly adapt to the changes of light intensity and environmental conditions, and maintain the efficient operation of MPPT. Moreover, particle swarm optimization has strong local search ability, and gray Wolf optimization improves local search accuracy. The combination of the two improves local search accuracy. By combining the characteristics of Levy flight algorithm, the parameters of PSO and GWO algorithm, such as inertia weight and convergence factor, are dynamically adjusted to adapt to different working conditions of MPPT. The optimal solution is output as the optimal strategy of MPPT through collaboration. The potential practical impact is that the improved MPPT control strategy can track the maximum power point more effectively, improve the efficiency and stability of the photovoltaic power generation system, reduce energy waste by improving the tracking accuracy and convergence speed of the photovoltaic system, and improve the robustness of the system.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
期刊最新文献
Realization and research of self-healing technology of power communication equipment based on power safety and controllability Integrated energy trading algorithm for source-grid-load-storage energy system based on distributed machine learning Distributed hybrid energy storage photovoltaic microgrid control based on MPPT algorithm and equilibrium control strategy Research on the impact of enterprise digital transformation based on digital twin technology on renewable energy investment decisions Optimizing power system trading processes using smart contract algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1