Stratifying vascular disease patients into homogeneous subgroups using machine learning and FLAIR MRI biomarkers

Karissa Chan, Corinne Fischer, Pejman Jabehdar Maralani, Sandra E. Black, Alan R. Moody, April Khademi
{"title":"Stratifying vascular disease patients into homogeneous subgroups using machine learning and FLAIR MRI biomarkers","authors":"Karissa Chan, Corinne Fischer, Pejman Jabehdar Maralani, Sandra E. Black, Alan R. Moody, April Khademi","doi":"10.1038/s44303-024-00063-x","DOIUrl":null,"url":null,"abstract":"This study proposes a framework to stratify vascular disease patients based on brain health and cerebrovascular disease (CVD) risk using regional FLAIR biomarkers. Intensity and texture biomarkers were extracted from FLAIR volumes of 379 atherosclerosis patients. K-Means clustering identified five homogeneous subgroups. The 15 most important biomarkers for subgroup differentiation, identified via Random Forest classification, were used to generate biomarker profiles. ANOVA tests showed age and white matter lesion volume were significantly (p < 0.05) different across subgroups, while Fisher’s tests revealed significant (p < 0.05) differences in the prevalence of several vascular risk factors across subgroup. Based on biomarker and clinical profiles, Subgroup 4 was characterized with neurodegeneration unrelated to CVD, Subgroup 3 identified patients with high CVD risk requiring aggressive intervention, and Subgroups 1, 2, and 5 identified patients with varying levels of moderate risk, suitable for long-term lifestyle interventions. This study supports personalized treatment and risk stratification based on FLAIR biomarkers.","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":" ","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44303-024-00063-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Imaging","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44303-024-00063-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes a framework to stratify vascular disease patients based on brain health and cerebrovascular disease (CVD) risk using regional FLAIR biomarkers. Intensity and texture biomarkers were extracted from FLAIR volumes of 379 atherosclerosis patients. K-Means clustering identified five homogeneous subgroups. The 15 most important biomarkers for subgroup differentiation, identified via Random Forest classification, were used to generate biomarker profiles. ANOVA tests showed age and white matter lesion volume were significantly (p < 0.05) different across subgroups, while Fisher’s tests revealed significant (p < 0.05) differences in the prevalence of several vascular risk factors across subgroup. Based on biomarker and clinical profiles, Subgroup 4 was characterized with neurodegeneration unrelated to CVD, Subgroup 3 identified patients with high CVD risk requiring aggressive intervention, and Subgroups 1, 2, and 5 identified patients with varying levels of moderate risk, suitable for long-term lifestyle interventions. This study supports personalized treatment and risk stratification based on FLAIR biomarkers.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stratifying vascular disease patients into homogeneous subgroups using machine learning and FLAIR MRI biomarkers Metabolic nanoscopy enhanced by experimental and computational approaches Ultrahigh-field animal MRI system with advanced technological update Automated analysis of ultrastructure through large-scale hyperspectral electron microscopy Evaluation of the redox alteration in Duchenne muscular dystrophy model mice using in vivo DNP-MRI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1