Blm10-Based Compounds Add to the Knowledge of How Allosteric Modulators Influence Human 20S Proteasome.

IF 3.5 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY ACS Chemical Biology Pub Date : 2025-02-05 DOI:10.1021/acschembio.4c00341
Julia Witkowska, Małgorzata Giżyńska, Przemysław Karpowicz, Daria Sowik, Karolina Trepczyk, Fabian Hennenberg, Ashwin Chari, Artur Giełdoń, Karolina Pierzynowska, Lidia Gaffke, Grzegorz Węgrzyn, Elżbieta Jankowska
{"title":"Blm10-Based Compounds Add to the Knowledge of How Allosteric Modulators Influence Human 20S Proteasome.","authors":"Julia Witkowska, Małgorzata Giżyńska, Przemysław Karpowicz, Daria Sowik, Karolina Trepczyk, Fabian Hennenberg, Ashwin Chari, Artur Giełdoń, Karolina Pierzynowska, Lidia Gaffke, Grzegorz Węgrzyn, Elżbieta Jankowska","doi":"10.1021/acschembio.4c00341","DOIUrl":null,"url":null,"abstract":"<p><p>Proteasomes catalyze protein degradation in cells and play an integral role in cellular homeostasis. Its activity decreases with age alongside the load of defective proteins, resulting from mutations or oxidative stress-induced damage. Such proteins are prone to aggregation and, if not efficiently degraded, can form toxic oligomers and amyloid plaques. Developing an effective way to activate the proteasome could prevent such pathologies. Designing activators is not easy because they do not bind in the active site, which is well-defined and highly conserved, but away from it. The structures of proteasome complexes with natural activators can help here, but these are large proteins, some even multimeric, whose activity is difficult to replace with a small-molecule compound. Nevertheless, the use of fragments of such proteins makes it possible to accumulate knowledge about the relevance of various structural elements for efficient and selective activation. Here, we presented peptidic activators of the 20S proteasome, which were designed based on both the <i>C</i>-terminal sequence of the yeast proteasome activator, Blm10 protein, and the interactions predicted by molecular modeling. These Blm analogs were able to stimulate human 20S proteasome to more efficiently degrade both small fluorogenic substrates and proteins. The best activators also demonstrated their efficacy in cell lysates. X-ray crystallography indicated that an effective modulator can bind to several sites on the surface of the proteasome without causing permanent structural changes in its immediate vicinity but affecting the active sites.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.4c00341","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Proteasomes catalyze protein degradation in cells and play an integral role in cellular homeostasis. Its activity decreases with age alongside the load of defective proteins, resulting from mutations or oxidative stress-induced damage. Such proteins are prone to aggregation and, if not efficiently degraded, can form toxic oligomers and amyloid plaques. Developing an effective way to activate the proteasome could prevent such pathologies. Designing activators is not easy because they do not bind in the active site, which is well-defined and highly conserved, but away from it. The structures of proteasome complexes with natural activators can help here, but these are large proteins, some even multimeric, whose activity is difficult to replace with a small-molecule compound. Nevertheless, the use of fragments of such proteins makes it possible to accumulate knowledge about the relevance of various structural elements for efficient and selective activation. Here, we presented peptidic activators of the 20S proteasome, which were designed based on both the C-terminal sequence of the yeast proteasome activator, Blm10 protein, and the interactions predicted by molecular modeling. These Blm analogs were able to stimulate human 20S proteasome to more efficiently degrade both small fluorogenic substrates and proteins. The best activators also demonstrated their efficacy in cell lysates. X-ray crystallography indicated that an effective modulator can bind to several sites on the surface of the proteasome without causing permanent structural changes in its immediate vicinity but affecting the active sites.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Chemical Biology
ACS Chemical Biology 生物-生化与分子生物学
CiteScore
7.50
自引率
5.00%
发文量
353
审稿时长
3.3 months
期刊介绍: ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology. The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies. We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.
期刊最新文献
Blm10-Based Compounds Add to the Knowledge of How Allosteric Modulators Influence Human 20S Proteasome. YBX1 Modulates 8-Oxoguanine Recognition and Repair in DNA. Effect of pH-Responsive Ligands on mRNA Knockdown in EGFR-Targeting Ligand-Conjugated siRNAs. Radical SAM Enzyme WprB Catalyzes Uniform Cross-Link Topology between Trp-C5 and Arg-Cγ on the Precursor Peptide. Discovery of Dual ROCK1/2 Inhibitors from Nocardiopsis sp. under Metal Stress.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1