{"title":"Pressure-improved Scott-Vogelius type elements.","authors":"Nis-Erik Bohne, Benedikt Gräßle, Stefan A Sauter","doi":"10.1007/s10092-024-00627-8","DOIUrl":null,"url":null,"abstract":"<p><p>The Scott-Vogelius element is a popular finite element for the discretization of the Stokes equations which enjoys inf-sup stability and gives divergence-free velocity approximations. However, it is well known that the convergence rates for the discrete pressure deteriorate in the presence of certain <i>critical vertices</i> in a triangulation of the domain. Modifications of the Scott-Vogelius element such as the recently introduced pressure-wired Stokes element also suffer from this effect. In this paper we introduce a simple modification strategy for these pressure spaces that preserves the inf-sup stability while the pressure converges at an optimal rate.</p>","PeriodicalId":9522,"journal":{"name":"Calcolo","volume":"62 1","pages":"8"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682022/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calcolo","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10092-024-00627-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Scott-Vogelius element is a popular finite element for the discretization of the Stokes equations which enjoys inf-sup stability and gives divergence-free velocity approximations. However, it is well known that the convergence rates for the discrete pressure deteriorate in the presence of certain critical vertices in a triangulation of the domain. Modifications of the Scott-Vogelius element such as the recently introduced pressure-wired Stokes element also suffer from this effect. In this paper we introduce a simple modification strategy for these pressure spaces that preserves the inf-sup stability while the pressure converges at an optimal rate.
期刊介绍:
Calcolo is a quarterly of the Italian National Research Council, under the direction of the Institute for Informatics and Telematics in Pisa. Calcolo publishes original contributions in English on Numerical Analysis and its Applications, and on the Theory of Computation.
The main focus of the journal is on Numerical Linear Algebra, Approximation Theory and its Applications, Numerical Solution of Differential and Integral Equations, Computational Complexity, Algorithmics, Mathematical Aspects of Computer Science, Optimization Theory.
Expository papers will also appear from time to time as an introduction to emerging topics in one of the above mentioned fields. There will be a "Report" section, with abstracts of PhD Theses, news and reports from conferences and book reviews. All submissions will be carefully refereed.