Nano-second pulsed laser ablation of inconel 718 and MMPCD for simultaneous optimal ablation rate and surface quality.

IF 3.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Scientific Reports Pub Date : 2024-12-30 DOI:10.1038/s41598-024-81233-0
Ahmed Elkaseer, Islam H Abdelgaliel, Jon Lambarri, Iban Quintana, Steffen Scholz, Mohamed F Aly
{"title":"Nano-second pulsed laser ablation of inconel 718 and MMPCD for simultaneous optimal ablation rate and surface quality.","authors":"Ahmed Elkaseer, Islam H Abdelgaliel, Jon Lambarri, Iban Quintana, Steffen Scholz, Mohamed F Aly","doi":"10.1038/s41598-024-81233-0","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the ablation performance of Inconel 718, a nickel-based superalloy, and metal matrix polycrystalline diamond (MMPCD), a super composite, using a nano-second (ns) pulsed laser across a range of ablation conditions. Single trenches varying in energy fluence and scanning speeds were created, analyzing the experimental responses in terms of ablation rate and surface roughness. Using regression techniques, models were developed to understand these relationships. Four multi-objective optimization algorithms, weighted value grey wolf optimizer (WVGWO), multi-objective Pareto search (MOPS), multi-objective genetic algorithm (MOGA), and multi-objective sunflower optimization (MOSFO), were employed to optimize these models. Key findings include MMPCD achieving the highest ablation rates at maximum fluence and lower speeds with negligible recast, resulting in smoother surfaces, whereas Inconel 718 reached its peak rates at similar conditions but exhibited significant surface recast. This research provides valuable insights into ns-pulsed laser machining for advanced materials, emphasizing the impact of fluence and scanning speed on achieving high ablation rates and minimal surface roughness.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"31698"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-81233-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the ablation performance of Inconel 718, a nickel-based superalloy, and metal matrix polycrystalline diamond (MMPCD), a super composite, using a nano-second (ns) pulsed laser across a range of ablation conditions. Single trenches varying in energy fluence and scanning speeds were created, analyzing the experimental responses in terms of ablation rate and surface roughness. Using regression techniques, models were developed to understand these relationships. Four multi-objective optimization algorithms, weighted value grey wolf optimizer (WVGWO), multi-objective Pareto search (MOPS), multi-objective genetic algorithm (MOGA), and multi-objective sunflower optimization (MOSFO), were employed to optimize these models. Key findings include MMPCD achieving the highest ablation rates at maximum fluence and lower speeds with negligible recast, resulting in smoother surfaces, whereas Inconel 718 reached its peak rates at similar conditions but exhibited significant surface recast. This research provides valuable insights into ns-pulsed laser machining for advanced materials, emphasizing the impact of fluence and scanning speed on achieving high ablation rates and minimal surface roughness.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对 inconel 718 和 MMPCD 进行纳秒脉冲激光烧蚀,同时获得最佳烧蚀率和表面质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
期刊最新文献
Application of the Lasso regularisation technique in mitigating overfitting in air quality prediction models. A novel deep synthesis-based insider intrusion detection (DS-IID) model for malicious insiders and AI-generated threats. Carboxylated nanocellulose from quinoa husk for enhanced protease immobilization and stability of protease in biotechnological applications. Healthcare workers safety: a cohort study using healthcare utilisation databases on vaccination and vaccine timeliness impact against SARS-CoV-2 infection. Experimental research on remote non-contact laser vibration measurement for tunnel lining cavities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1