Khushdil Khan, Khafsa Malik, Mushtaq Ahmad, M Naveed Iqbal Raja, Moona Nazish, Asif Kamal, Gadah Albasher, Shabir Ahmed, Muhammad Tahir Naseem
{"title":"Exploring the nutritional composition and quality parameters of natural honey from diverse melliferous flora.","authors":"Khushdil Khan, Khafsa Malik, Mushtaq Ahmad, M Naveed Iqbal Raja, Moona Nazish, Asif Kamal, Gadah Albasher, Shabir Ahmed, Muhammad Tahir Naseem","doi":"10.1038/s41598-024-79672-w","DOIUrl":null,"url":null,"abstract":"<p><p>Natural honey is enriched with essential and beneficial nutrients. This study aimed to investigate the melliferous flora microscopic techniques and assess the biochemical properties of honey. Flavonoid and phenolic contents in honey samples were analyzed via colorimetric and Folin-Ciocalteu methods and the alpha-amylase, reducing power, and minerals using Pull's and spectroscopy methods. HPLC determined the Sucrose, fructose, and glucose content in the honey samples. Four different classes of moisture content were used to assist the honey quality, including A + < 17, A = 17-18, B = 18-19, and C > 19. This study identified the Eucalyptus globulus, Trifolium pratense, Neltuma juliflora, Ziziphus mauritiana, Asphodelus tenuifolius, Cynodon dactylon, Saccharum spontaneum, and Vachellia nilotica as the predominant plant species honey samples. The total range of moisture was observed from 16.5 to 21.1% in the samples studied. The honey class within the range of 16.5-17.5% was identified as the optimal class. Four classes of sucrose level were used to evaluate the honey quality, including: (2.50-2.60 = A +); (2.61-2.75 = A); (2.76-3.00 = B); (3.00 + = C). The total variation of sucrose levels in the analyzed ranged from 2.50 to 3.89%. Overall, the findings of these studies implemented various aspects of honey production, quality, and potential health benefits, benefiting consumers, beekeepers, and researchers.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"31626"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-79672-w","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Natural honey is enriched with essential and beneficial nutrients. This study aimed to investigate the melliferous flora microscopic techniques and assess the biochemical properties of honey. Flavonoid and phenolic contents in honey samples were analyzed via colorimetric and Folin-Ciocalteu methods and the alpha-amylase, reducing power, and minerals using Pull's and spectroscopy methods. HPLC determined the Sucrose, fructose, and glucose content in the honey samples. Four different classes of moisture content were used to assist the honey quality, including A + < 17, A = 17-18, B = 18-19, and C > 19. This study identified the Eucalyptus globulus, Trifolium pratense, Neltuma juliflora, Ziziphus mauritiana, Asphodelus tenuifolius, Cynodon dactylon, Saccharum spontaneum, and Vachellia nilotica as the predominant plant species honey samples. The total range of moisture was observed from 16.5 to 21.1% in the samples studied. The honey class within the range of 16.5-17.5% was identified as the optimal class. Four classes of sucrose level were used to evaluate the honey quality, including: (2.50-2.60 = A +); (2.61-2.75 = A); (2.76-3.00 = B); (3.00 + = C). The total variation of sucrose levels in the analyzed ranged from 2.50 to 3.89%. Overall, the findings of these studies implemented various aspects of honey production, quality, and potential health benefits, benefiting consumers, beekeepers, and researchers.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.