The impact of antioxidant-ciprofloxacin combinations on the evolution of antibiotic resistance in Pseudomonas aeruginosa biofilms.

IF 7.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY npj Biofilms and Microbiomes Pub Date : 2024-12-30 DOI:10.1038/s41522-024-00640-3
Doaa Higazy, Marwa N Ahmed, Oana Ciofu
{"title":"The impact of antioxidant-ciprofloxacin combinations on the evolution of antibiotic resistance in Pseudomonas aeruginosa biofilms.","authors":"Doaa Higazy, Marwa N Ahmed, Oana Ciofu","doi":"10.1038/s41522-024-00640-3","DOIUrl":null,"url":null,"abstract":"<p><p>The evolution of antimicrobial resistance (AMR) in biofilms, driven by mechanisms like oxidative stress, is a major challenge. This study investigates whether antioxidants (AOs) such as N-acetyl-cysteine (NAC) and Edaravone (ED) can reduce AMR in Pseudomonas aeruginosa biofilms exposed to sub-inhibitory concentrations of ciprofloxacin (CIP). In vitro experimental evolution studies were conducted using flow cells and glass beads biofilm models. Results showed that combining CIP with antioxidants (CIP-AOs) effectively reduced the development of CIP resistance. Isolates from biofilms treated with CIP-AO had significantly lower minimum inhibitory concentrations (MICs) of CIP compared to those treated with CIP alone. Whole-genome sequencing (WGS) revealed mutations in the negative regulators of efflux pumps, nfxB, and nalC, in CIP-only treated biofilm populations. The occurrence of nfxB mutations was significantly lower in flow cell biofilms treated with CIP-AO compared to CIP alone. These findings suggest that antioxidants could play a role in mitigating AMR development in biofilms.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"156"},"PeriodicalIF":7.8000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685532/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-024-00640-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The evolution of antimicrobial resistance (AMR) in biofilms, driven by mechanisms like oxidative stress, is a major challenge. This study investigates whether antioxidants (AOs) such as N-acetyl-cysteine (NAC) and Edaravone (ED) can reduce AMR in Pseudomonas aeruginosa biofilms exposed to sub-inhibitory concentrations of ciprofloxacin (CIP). In vitro experimental evolution studies were conducted using flow cells and glass beads biofilm models. Results showed that combining CIP with antioxidants (CIP-AOs) effectively reduced the development of CIP resistance. Isolates from biofilms treated with CIP-AO had significantly lower minimum inhibitory concentrations (MICs) of CIP compared to those treated with CIP alone. Whole-genome sequencing (WGS) revealed mutations in the negative regulators of efflux pumps, nfxB, and nalC, in CIP-only treated biofilm populations. The occurrence of nfxB mutations was significantly lower in flow cell biofilms treated with CIP-AO compared to CIP alone. These findings suggest that antioxidants could play a role in mitigating AMR development in biofilms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
抗氧化剂-环丙沙星组合对铜绿假单胞菌生物膜中抗生素耐药性演变的影响
由氧化应激等机制驱动的生物膜抗菌素耐药性(AMR)的进化是一个重大挑战。本研究探讨了n -乙酰半胱氨酸(NAC)和依达拉奉(ED)等抗氧化剂(AOs)是否能降低暴露于亚抑制浓度环丙沙星(CIP)的铜绿假单胞菌生物膜的AMR。采用流动细胞和玻璃微珠生物膜模型进行体外实验进化研究。结果表明,CIP与抗氧化剂(CIP- aos)配伍可有效降低水稻对CIP的抗性。与单独使用CIP处理的生物膜相比,CIP- ao处理的生物膜分离物具有显著降低的最低CIP抑制浓度(mic)。全基因组测序(WGS)揭示了外排泵负调节因子nfxB和nalC在仅cip处理的生物膜群体中的突变。与单独使用CIP相比,CIP- ao处理的流式细胞生物膜中nfxB突变的发生率显著降低。这些发现表明抗氧化剂可以在生物膜中减轻抗菌素耐药性的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Biofilms and Microbiomes
npj Biofilms and Microbiomes Immunology and Microbiology-Microbiology
CiteScore
12.10
自引率
3.30%
发文量
91
审稿时长
9 weeks
期刊介绍: npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.
期刊最新文献
Pharmacodynamics of interspecies interactions in polymicrobial infections. Streptococcus abundance and oral site tropism in humans and non-human primates reflects host and lifestyle differences. A human oral commensal-mediated protection against Sjögren's syndrome with maintenance of T cell immune homeostasis and improved oral microbiota. The role of fluid friction in streamer formation and biofilm growth. Deep generative modeling of annotated bacterial biofilm images.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1