Sub-terahertz transmissive reconfigurable intelligent surface for integrated beam steering and self-OOK-modulation

IF 20.6 Q1 OPTICS Light-Science & Applications Pub Date : 2025-01-01 DOI:10.1038/s41377-024-01690-0
Dongfang Shen, Feng Lan, Luyang Wang, Tianyang Song, Munan Yang, Tianyu Hu, Yueting Li, Xiaolei Nie, Jiayao Yang, Shixiong Liang, Hongxin Zeng, Hui-Fang Zhang, Pinaki Mazumder, Ziqiang Yang, Yaxin Zhang, Tie Jun Cui
{"title":"Sub-terahertz transmissive reconfigurable intelligent surface for integrated beam steering and self-OOK-modulation","authors":"Dongfang Shen, Feng Lan, Luyang Wang, Tianyang Song, Munan Yang, Tianyu Hu, Yueting Li, Xiaolei Nie, Jiayao Yang, Shixiong Liang, Hongxin Zeng, Hui-Fang Zhang, Pinaki Mazumder, Ziqiang Yang, Yaxin Zhang, Tie Jun Cui","doi":"10.1038/s41377-024-01690-0","DOIUrl":null,"url":null,"abstract":"<p>Boasting superior flexibility in beam manipulation and a simpler framework than traditional phased arrays, terahertz metasurface-based phased arrays show great promise for 5G-A/6G communication networks. Compared with the reflective reconfigurable intelligent surface (reflective RIS), the transmissive RIS (TRIS) offers more feasibility for transceiver multiplexing systems to meet the growing demand for high-performance beam tracking in terahertz communication and radar systems. However, the terahertz TRIS encounters greater challenges in phase shift, beam efficiency, and complex circuitry. Here, we propose a sub-terahertz TRIS based on the phase shift via Pancharatnam-Berry (PB) metasurface and self-on-off keying (OOK) modulation via Schottky diodes. The electrically reconfigurable unit cell consists of a column-wise phase resonator and a rectangular slot. An experimental retrieved equivalent lumped-element circuit model is implemented in joint field-circuit simulations and is validated by experiments. A fabricated prototype demonstrates excellent performance of TRIS with the minimum insertion loss of 2.8 dB for operational states, large bandwidth nearly covering the entire W-band for 1-bit phase shift, deep OOK amplitude modulation of 12 dB, and wide scanning range of ±60° with low specular transmission. We further implement an integrated platform combining high-speed beam steering and spatial-light modulation, verifying the point-to-point signal transmissions in different directions using the TRIS platform. The proposed TRIS with high-performance and cost-effective fabrication makes it a promising solution to terahertz minimalist communication systems, radar, and satellite communication systems.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"31 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01690-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Boasting superior flexibility in beam manipulation and a simpler framework than traditional phased arrays, terahertz metasurface-based phased arrays show great promise for 5G-A/6G communication networks. Compared with the reflective reconfigurable intelligent surface (reflective RIS), the transmissive RIS (TRIS) offers more feasibility for transceiver multiplexing systems to meet the growing demand for high-performance beam tracking in terahertz communication and radar systems. However, the terahertz TRIS encounters greater challenges in phase shift, beam efficiency, and complex circuitry. Here, we propose a sub-terahertz TRIS based on the phase shift via Pancharatnam-Berry (PB) metasurface and self-on-off keying (OOK) modulation via Schottky diodes. The electrically reconfigurable unit cell consists of a column-wise phase resonator and a rectangular slot. An experimental retrieved equivalent lumped-element circuit model is implemented in joint field-circuit simulations and is validated by experiments. A fabricated prototype demonstrates excellent performance of TRIS with the minimum insertion loss of 2.8 dB for operational states, large bandwidth nearly covering the entire W-band for 1-bit phase shift, deep OOK amplitude modulation of 12 dB, and wide scanning range of ±60° with low specular transmission. We further implement an integrated platform combining high-speed beam steering and spatial-light modulation, verifying the point-to-point signal transmissions in different directions using the TRIS platform. The proposed TRIS with high-performance and cost-effective fabrication makes it a promising solution to terahertz minimalist communication systems, radar, and satellite communication systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
期刊最新文献
Strategies to enhance THz harmonic generation combining multilayered, gated, and metamaterial-based architectures Machine learning assisted plasmonic metascreen for enhanced broadband absorption in ultra-thin silicon films Chiral exceptional point enhanced active tuning and nonreciprocity in micro-resonators Nanoscale thickness Octave-spanning coherent supercontinuum light generation Experimental demonstration of 8190-km long-haul semiconductor-laser chaos synchronization induced by digital optical communication signal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1