Hasan Al Banna, Kimberley Berg, Tasnia Sadat, Naba Krishna Das, Roshan Paudel, Victoria D'Souza, Deepak Koirala
{"title":"Synthetic anti-RNA antibody derivatives for RNA visualization in mammalian cells","authors":"Hasan Al Banna, Kimberley Berg, Tasnia Sadat, Naba Krishna Das, Roshan Paudel, Victoria D'Souza, Deepak Koirala","doi":"10.1093/nar/gkae1275","DOIUrl":null,"url":null,"abstract":"Although antibody derivatives, such as Fabs and scFvs, have revolutionized the cellular imaging, quantification and tracking of proteins, analogous tools and strategies are unavailable for cellular RNA visualization. Here, we developed four synthetic anti-RNA scFv (sarabody) probes and their green fluorescent protein (GFP) fusions and demonstrated their potential to visualize RNA in live mammalian cells. We expressed these sarabodies and sarabody–GFP modules, purified them as soluble proteins, characterized their binding interactions with their corresponding epitopes and finally employed two of the four modules, sara1-GFP and sara1c-GFP, to visualize a target messenger RNA in live U2OS cells. Our current RNA imaging strategy is analogous to the existing MCP-MS2 system for RNA visualization, but additionally, our approach provides robust flexibility for developing target RNA-specific imaging modules, as epitope-specific probes can be selected from a library generated by diversifying the sarabody complementarity determining regions. While we continue to optimize these probes, develop new probes for various target RNAs and incorporate other fluorescence proteins like mCherry and HaloTag, our groundwork results demonstrated that these first-of-a-kind immunofluorescent probes will have tremendous potential for tracking mature RNAs and may aid in visualizing and quantifying many cellular processes as well as examining the spatiotemporal dynamics of various RNAs.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"55 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae1275","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Although antibody derivatives, such as Fabs and scFvs, have revolutionized the cellular imaging, quantification and tracking of proteins, analogous tools and strategies are unavailable for cellular RNA visualization. Here, we developed four synthetic anti-RNA scFv (sarabody) probes and their green fluorescent protein (GFP) fusions and demonstrated their potential to visualize RNA in live mammalian cells. We expressed these sarabodies and sarabody–GFP modules, purified them as soluble proteins, characterized their binding interactions with their corresponding epitopes and finally employed two of the four modules, sara1-GFP and sara1c-GFP, to visualize a target messenger RNA in live U2OS cells. Our current RNA imaging strategy is analogous to the existing MCP-MS2 system for RNA visualization, but additionally, our approach provides robust flexibility for developing target RNA-specific imaging modules, as epitope-specific probes can be selected from a library generated by diversifying the sarabody complementarity determining regions. While we continue to optimize these probes, develop new probes for various target RNAs and incorporate other fluorescence proteins like mCherry and HaloTag, our groundwork results demonstrated that these first-of-a-kind immunofluorescent probes will have tremendous potential for tracking mature RNAs and may aid in visualizing and quantifying many cellular processes as well as examining the spatiotemporal dynamics of various RNAs.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.