Ce doping induces lattice expansion of cobalt oxide electrocatalyst to achieve efficient proton exchange membrane water electrolysis

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Physics Pub Date : 2025-02-01 DOI:10.1016/j.mtphys.2024.101641
Zhi Wang , Jinpeng Li , Chengdeng Wang , Jiashuai Wang , Xiangrui Chen , Jun Wu , Zhiming Bai , Yan Gao , Li Chen , Xiaoqin Yan
{"title":"Ce doping induces lattice expansion of cobalt oxide electrocatalyst to achieve efficient proton exchange membrane water electrolysis","authors":"Zhi Wang ,&nbsp;Jinpeng Li ,&nbsp;Chengdeng Wang ,&nbsp;Jiashuai Wang ,&nbsp;Xiangrui Chen ,&nbsp;Jun Wu ,&nbsp;Zhiming Bai ,&nbsp;Yan Gao ,&nbsp;Li Chen ,&nbsp;Xiaoqin Yan","doi":"10.1016/j.mtphys.2024.101641","DOIUrl":null,"url":null,"abstract":"<div><div>The development of non-precious metal anode catalysts with high performance and low cost for proton exchange membrane (PEM) water electrolysis presents a significant challenge. This work successfully synthesized a bimetallic-doped cobalt-based oxide titanium diboride composite structure catalyst (Ce-Mn-Co<sub>3</sub>O<sub>4</sub>/TiB<sub>2</sub>) by combining hydrothermal methods with heat treatment processes. Ce doping induces surface oxygen vacancies of Co<sub>3</sub>O<sub>4</sub> to optimize adsorption energy, while Mn stabilizes lattice oxygen and impedes the dissolution of metal ions. Theoretical simulations support the experimental results, highlighting the strain effect of Ce doping on the Co<sub>3</sub>O<sub>4</sub>-TiB<sub>2</sub> interface, promoting further charge redistribution, and enhancing catalyst conductivity. Ce-Mn-Co<sub>3</sub>O<sub>4</sub>/TiB<sub>2</sub> exhibits a low oxygen evolution overpotential (389 mV @10 mA/cm<sup>2</sup>). Upon assembly into a PEM electrolytic cell, it achieves a current density of 250 mA/cm<sup>2</sup> at 1.63 V and demonstrates stable operation for nearly 25 h. This research provides novel ideas and methodologies for developing non-precious metal OER electrocatalysts suitable for PEM electrolysis.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"51 ","pages":"Article 101641"},"PeriodicalIF":10.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324003171","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of non-precious metal anode catalysts with high performance and low cost for proton exchange membrane (PEM) water electrolysis presents a significant challenge. This work successfully synthesized a bimetallic-doped cobalt-based oxide titanium diboride composite structure catalyst (Ce-Mn-Co3O4/TiB2) by combining hydrothermal methods with heat treatment processes. Ce doping induces surface oxygen vacancies of Co3O4 to optimize adsorption energy, while Mn stabilizes lattice oxygen and impedes the dissolution of metal ions. Theoretical simulations support the experimental results, highlighting the strain effect of Ce doping on the Co3O4-TiB2 interface, promoting further charge redistribution, and enhancing catalyst conductivity. Ce-Mn-Co3O4/TiB2 exhibits a low oxygen evolution overpotential (389 mV @10 mA/cm2). Upon assembly into a PEM electrolytic cell, it achieves a current density of 250 mA/cm2 at 1.63 V and demonstrates stable operation for nearly 25 h. This research provides novel ideas and methodologies for developing non-precious metal OER electrocatalysts suitable for PEM electrolysis.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ce掺杂诱导氧化钴电催化剂晶格膨胀实现高效质子交换膜电解
开发高性能、低成本的质子交换膜(PEM)电解用非贵金属阳极催化剂是一个重大挑战。本工作通过水热法与热处理工艺相结合成功合成了一种双金属掺杂钴基氧化物二硼化钛复合结构催化剂(Ce-Mn-Co3O4/TiB2)。Ce掺杂诱导Co3O4表面氧空位优化吸附能,Mn掺杂稳定晶格氧,阻碍金属离子的溶解。理论模拟支持实验结果,强调了Ce掺杂对Co3O4-TiB2界面的应变效应,促进了进一步的电荷再分配,提高了催化剂的导电性。Ce-Mn-Co3O4/TiB2具有低析氧过电位(389 mV @10mA/cm2)。在组装成PEM电解电池后,它在1.63 V下达到250 mA/cm2的电流密度,并表现出近25小时的稳定运行。本研究为开发适用于PEM电解的非贵金属OER电催化剂提供了新的思路和方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
期刊最新文献
NEA GaAs Photocathode for Electron Source: From Growth, Cleaning, Activation to Performance Abnormal thermal conductivity increase in β-Ga2O3 by an unconventional bonding mechanism using machine-learning potential MXene Nb2C/MoS2 heterostructure: Nonlinear optical properties and a new broadband saturable absorber for ultrafast photonics Low-temperature annealing induces superior shock-resistant performance in FeCoCrNiCu high-entropy alloy Effectively tuning phonon transport across Al/nonmetal interfaces through controlling interfacial bonding strength without modifying thermal conductivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1