Fabrication of flexible PAN/Bi2WO6/BiOI heterojunction nanofiber and the property of photocatalytic degradation

IF 6.9 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Applied Surface Science Pub Date : 2024-12-31 DOI:10.1016/j.apsusc.2024.162266
Pingping Teng , Yinxiao Chen , Nan Lu , Chen Shi , Zhihai Liu , Zheng Zhu , Yang Zhang , Shuai Gao , Sivagunalan Sivanathan , Kang Li
{"title":"Fabrication of flexible PAN/Bi2WO6/BiOI heterojunction nanofiber and the property of photocatalytic degradation","authors":"Pingping Teng ,&nbsp;Yinxiao Chen ,&nbsp;Nan Lu ,&nbsp;Chen Shi ,&nbsp;Zhihai Liu ,&nbsp;Zheng Zhu ,&nbsp;Yang Zhang ,&nbsp;Shuai Gao ,&nbsp;Sivagunalan Sivanathan ,&nbsp;Kang Li","doi":"10.1016/j.apsusc.2024.162266","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a novel flexible PAN/Bi<sub>2</sub>WO<sub>6</sub>/BiOI heterojunction nanofiber, fabricated through electrospinning, as an advanced photocatalyst for the degradation of pollutants. The PAN nanofibers serve a stable and reusable support for the Bi<sub>2</sub>WO<sub>6</sub>/BiOI heterojunctions, which were constructed using a combination of solvothermal and successive ionic layer adsorption and reaction (SILAR) methods. The separation efficiency of the photogenerated electron-hole pairs and photocatalytic degradation efficiency of Rhodamine B under visible light were significantly enhanced by the heterojunction structure. Comprehensive characterizations confirmed the successful formation of the heterostructure and its superior electron transfer capabilities. The study identified superoxide radicals (·O<sub>2</sub><sup>-</sup>) and photogenerated holes (h<sup>+</sup>) as key contributors to the photocatalytic process. The optimized nanofiber exhibited a degradation rate constant of 6.529 × 10<sup>-2</sup>min<sup>−1</sup>, significantly outperforming its individual components, and maintained high activity over multiple reuse cycles. This research provides a promising approach for designing high-efficiency, recyclable photocatalytic materials with potential applications in environmental remediation.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"687 ","pages":"Article 162266"},"PeriodicalIF":6.9000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433224029866","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel flexible PAN/Bi2WO6/BiOI heterojunction nanofiber, fabricated through electrospinning, as an advanced photocatalyst for the degradation of pollutants. The PAN nanofibers serve a stable and reusable support for the Bi2WO6/BiOI heterojunctions, which were constructed using a combination of solvothermal and successive ionic layer adsorption and reaction (SILAR) methods. The separation efficiency of the photogenerated electron-hole pairs and photocatalytic degradation efficiency of Rhodamine B under visible light were significantly enhanced by the heterojunction structure. Comprehensive characterizations confirmed the successful formation of the heterostructure and its superior electron transfer capabilities. The study identified superoxide radicals (·O2-) and photogenerated holes (h+) as key contributors to the photocatalytic process. The optimized nanofiber exhibited a degradation rate constant of 6.529 × 10-2min−1, significantly outperforming its individual components, and maintained high activity over multiple reuse cycles. This research provides a promising approach for designing high-efficiency, recyclable photocatalytic materials with potential applications in environmental remediation.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
柔性PAN/Bi2WO6/BiOI异质结纳米纤维的制备及其光催化降解性能
本文介绍了一种新型柔性PAN/Bi2WO6/BiOI异质结纳米纤维,该纤维是一种用于降解污染物的先进光催化剂。PAN纳米纤维是一种稳定且可重复使用的Bi2WO6/BiOI异质结载体,该异质结采用溶剂热吸附和连续离子层吸附反应(SILAR)相结合的方法构建。异质结结构显著提高了光生电子-空穴对的分离效率和罗丹明B在可见光下的光催化降解效率。综合表征证实了异质结构的成功形成及其优越的电子转移能力。研究发现超氧自由基(·O2-)和光生空穴(h+)是光催化过程的关键贡献者。优化后的纳米纤维的降解速率常数为6.529 × 10-2min−1,明显优于其单个组分,并且在多次重复使用循环中保持较高的活性。该研究为设计高效、可回收的光催化材料提供了一条有前景的途径,并在环境修复中具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
麦克林
bismuth nitrate pentahydrate (Bi(NO3)3·5H2O)
阿拉丁
sodium tungstate
阿拉丁
potassium iodide (KI)
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
期刊最新文献
Investigating the catalytic degradation of dissolved organic matter in actual coking wastewater by AC/Fe–Co nanoparticles using spectroscopic techniques Tailoring anodized TiO2 nanotube geometry and chemistry for superior interfacial adhesion of PLA/Ti6Al4V laminated composites Fabrication and resistive switching of sol–gel derived ZnO/NiO heterostructures Boosted charge separation and reactive species generation in CuO-modified Hf/Be co-doped Fe2O3 photocatalysts for organic pollutant and bacterial removal Solid-state zinc precursor-derived ZnSe nanocrystals for remarkable photocatalytic H2O2 production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1