{"title":"Large language models for human-machine collaborative particle accelerator tuning through natural language","authors":"Jan Kaiser, Anne Lauscher, Annika Eichler","doi":"10.1126/sciadv.adr4173","DOIUrl":null,"url":null,"abstract":"Autonomous tuning of particle accelerators is an active and challenging research field with the goal of enabling advanced accelerator technologies and cutting-edge high-impact applications, such as physics discovery, cancer research, and material sciences. A challenge with autonomous accelerator tuning remains that the most capable algorithms require experts in optimization and machine learning to implement them for every new tuning task. Here, we propose the use of large language models (LLMs) to tune particle accelerators. We demonstrate on a proof-of-principle example the ability of LLMs to tune an accelerator subsystem based on only a natural language prompt from the operator, and compare their performance to state-of-the-art optimization algorithms, such as Bayesian optimization and reinforcement learning–trained optimization. In doing so, we also show how LLMs can perform numerical optimization of a nonlinear real-world objective. Ultimately, this work represents another complex task that LLMs can solve and promises to help accelerate the deployment of autonomous tuning algorithms to day-to-day particle accelerator operations.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"38 1","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adr4173","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Autonomous tuning of particle accelerators is an active and challenging research field with the goal of enabling advanced accelerator technologies and cutting-edge high-impact applications, such as physics discovery, cancer research, and material sciences. A challenge with autonomous accelerator tuning remains that the most capable algorithms require experts in optimization and machine learning to implement them for every new tuning task. Here, we propose the use of large language models (LLMs) to tune particle accelerators. We demonstrate on a proof-of-principle example the ability of LLMs to tune an accelerator subsystem based on only a natural language prompt from the operator, and compare their performance to state-of-the-art optimization algorithms, such as Bayesian optimization and reinforcement learning–trained optimization. In doing so, we also show how LLMs can perform numerical optimization of a nonlinear real-world objective. Ultimately, this work represents another complex task that LLMs can solve and promises to help accelerate the deployment of autonomous tuning algorithms to day-to-day particle accelerator operations.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.