Computational Methods for Data Integration and Imputation of Missing Values in Omics Datasets.

IF 3.4 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Proteomics Pub Date : 2024-12-30 DOI:10.1002/pmic.202400100
Yannis Schumann, Antonia Gocke, Julia E Neumann
{"title":"Computational Methods for Data Integration and Imputation of Missing Values in Omics Datasets.","authors":"Yannis Schumann, Antonia Gocke, Julia E Neumann","doi":"10.1002/pmic.202400100","DOIUrl":null,"url":null,"abstract":"<p><p>Molecular profiling of different omic-modalities (e.g., DNA methylomics, transcriptomics, proteomics) in biological systems represents the basis for research and clinical decision-making. Measurement-specific biases, so-called batch effects, often hinder the integration of independently acquired datasets, and missing values further hamper the applicability of typical data processing algorithms. In addition to careful experimental design, well-defined standards in data acquisition and data exchange, the alleviation of these phenomena particularly requires a dedicated data integration and preprocessing pipeline. This review aims to give a comprehensive overview of computational methods for data integration and missing value imputation for omic data analyses. We provide formal definitions for missing value mechanisms and propose a novel statistical taxonomy for batch effects, especially in the presence of missing data. Based on an automated document search and systematic literature review, we describe 32 distinct data integration methods from five main methodological categories, as well as 37 algorithms for missing value imputation from five separate categories. Additionally, this review highlights multiple quantitative evaluation methods to aid researchers in selecting a suitable set of methods for their work. Finally, this work provides an integrated discussion of the relevance of batch effects and missing values in omics with corresponding method recommendations. We then propose a comprehensive three-step workflow from the study conception to final data analysis and deduce perspectives for future research. Eventually, we present a comprehensive flow chart as well as exemplary decision trees to aid practitioners in the selection of specific approaches for imputation and data integration in their studies.</p>","PeriodicalId":224,"journal":{"name":"Proteomics","volume":" ","pages":"e202400100"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pmic.202400100","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular profiling of different omic-modalities (e.g., DNA methylomics, transcriptomics, proteomics) in biological systems represents the basis for research and clinical decision-making. Measurement-specific biases, so-called batch effects, often hinder the integration of independently acquired datasets, and missing values further hamper the applicability of typical data processing algorithms. In addition to careful experimental design, well-defined standards in data acquisition and data exchange, the alleviation of these phenomena particularly requires a dedicated data integration and preprocessing pipeline. This review aims to give a comprehensive overview of computational methods for data integration and missing value imputation for omic data analyses. We provide formal definitions for missing value mechanisms and propose a novel statistical taxonomy for batch effects, especially in the presence of missing data. Based on an automated document search and systematic literature review, we describe 32 distinct data integration methods from five main methodological categories, as well as 37 algorithms for missing value imputation from five separate categories. Additionally, this review highlights multiple quantitative evaluation methods to aid researchers in selecting a suitable set of methods for their work. Finally, this work provides an integrated discussion of the relevance of batch effects and missing values in omics with corresponding method recommendations. We then propose a comprehensive three-step workflow from the study conception to final data analysis and deduce perspectives for future research. Eventually, we present a comprehensive flow chart as well as exemplary decision trees to aid practitioners in the selection of specific approaches for imputation and data integration in their studies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Proteomics
Proteomics 生物-生化研究方法
CiteScore
6.30
自引率
5.90%
发文量
193
审稿时长
3 months
期刊介绍: PROTEOMICS is the premier international source for information on all aspects of applications and technologies, including software, in proteomics and other "omics". The journal includes but is not limited to proteomics, genomics, transcriptomics, metabolomics and lipidomics, and systems biology approaches. Papers describing novel applications of proteomics and integration of multi-omics data and approaches are especially welcome.
期刊最新文献
Proteomic Insight Into Alzheimer's Disease Pathogenesis Pathways. The Omics-Driven Machine Learning Path to Cost-Effective Precision Medicine in Chronic Kidney Disease. The Proteomic Landscape of the Coronary Accessible Heart Cell Surfaceome. Decoding Microbial Plastic Colonisation: Multi-Omic Insights Into the Fast-Evolving Dynamics of Early-Stage Biofilms. Fecal Metaproteomics as a Tool to Monitor Functional Modifications Induced in the Gut Microbiota by Ketogenic Diet: A Case Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1