Guiyin Zhu, Haiyang Yu, Xiaoming Li, Wenjing Ye, Xi Chen, Wen Gu
{"title":"CD147 mitochondria translocation induced airway remodeling in asthmatic mouse models by regulating M2 macrophage polarization via ANT1-mediated mitophagy.","authors":"Guiyin Zhu, Haiyang Yu, Xiaoming Li, Wenjing Ye, Xi Chen, Wen Gu","doi":"10.1152/ajpcell.00735.2024","DOIUrl":null,"url":null,"abstract":"<p><p>CD147 has the potential to serve as a specific target with therapeutic characteristics in several respiratory diseases. Studies have demonstrated that CD147 regulates levels of oxidative phosphorylation (OXPHOS) through the process of mitochondrial translocations. However, there is still limited insight in the distinct mechanism of CD147 in asthmatic macrophages. Here, we found that CD147 expression levels increased significantly both in vivo and in vitro. CD147 undergoes mitochondrial translocation in M2 macrophages. Reducing the expression of CD147 resulted in a decline in M2 polarization levels within macrophages, as well as a decrease in the levels of mitochondrial respiratory chain complexes I, II, and IV proteins. This effect may be attained by interacting with adenine nucleotide translocase 1 (ANT1), subsequently impacting the levels of mitophagy. We also discovered that CD147 knockdown significantly reduced airway remodeling and inflammation in addition to lowering the polarization level of M2 in the lung tissues of chronic asthmatic model mice. The findings represent the first evidence of the distinct function of CD147 in the process of airway remodeling in asthma.<b>NEW & NOTEWORTHY</b> The interaction between CD147 and ANT1 in M2 macrophages occurs via mitochondrial translocation, resulting in alterations in ANT1 expression levels. This, in turn, triggers the activation of the mitophagy pathway, leading to modifications in OXPHOS levels. Ultimately, these changes contribute to the enhancement of M2 polarization, thereby exacerbating airway remodeling in asthma.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C604-C616"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00735.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
CD147 has the potential to serve as a specific target with therapeutic characteristics in several respiratory diseases. Studies have demonstrated that CD147 regulates levels of oxidative phosphorylation (OXPHOS) through the process of mitochondrial translocations. However, there is still limited insight in the distinct mechanism of CD147 in asthmatic macrophages. Here, we found that CD147 expression levels increased significantly both in vivo and in vitro. CD147 undergoes mitochondrial translocation in M2 macrophages. Reducing the expression of CD147 resulted in a decline in M2 polarization levels within macrophages, as well as a decrease in the levels of mitochondrial respiratory chain complexes I, II, and IV proteins. This effect may be attained by interacting with adenine nucleotide translocase 1 (ANT1), subsequently impacting the levels of mitophagy. We also discovered that CD147 knockdown significantly reduced airway remodeling and inflammation in addition to lowering the polarization level of M2 in the lung tissues of chronic asthmatic model mice. The findings represent the first evidence of the distinct function of CD147 in the process of airway remodeling in asthma.NEW & NOTEWORTHY The interaction between CD147 and ANT1 in M2 macrophages occurs via mitochondrial translocation, resulting in alterations in ANT1 expression levels. This, in turn, triggers the activation of the mitophagy pathway, leading to modifications in OXPHOS levels. Ultimately, these changes contribute to the enhancement of M2 polarization, thereby exacerbating airway remodeling in asthma.
期刊介绍:
The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.