Evaluating the sensitivity of a chronic plant bioassay relative to an independently derived predicted no-effect thresholds to support risk assessment of very hydrophobic organic chemicals
Aaron D. Redman, Miriam Leon Paumen, Daniel J. Letinski, Barbara A. Kelley, Cary Sutherland, Bryan M. Hedgpeth, Josh D. Butler, Roger Prince, Gail E. Bragin, Abraham J. Smith
{"title":"Evaluating the sensitivity of a chronic plant bioassay relative to an independently derived predicted no-effect thresholds to support risk assessment of very hydrophobic organic chemicals","authors":"Aaron D. Redman, Miriam Leon Paumen, Daniel J. Letinski, Barbara A. Kelley, Cary Sutherland, Bryan M. Hedgpeth, Josh D. Butler, Roger Prince, Gail E. Bragin, Abraham J. Smith","doi":"10.1007/s00244-024-01106-5","DOIUrl":null,"url":null,"abstract":"<div><p>Environmental risk assessments of very hydrophobic organic compounds (VHOCs) in soils are often difficult because multiple processes (e.g., sorption, volatilization, biodegradation) can complicate the interpretation of results. A standardized soil dosing and aging procedure is presented for assessing bioavailability of VHOCs in a synthetic soil, which was used to evaluate the phytotoxicity of VHOCs. The soil preparation protocol resulted in relatively stable freely dissolved concentrations of test substance compared to bulk soil concentrations with some losses likely due to volatility and biodegradation. This dosing method was used in a chronic terrestrial plant toxicity bioassay to evaluate the potential toxicity of VHOCs on complex reproductive endpoints like inflorescence and seed bud formation. Testing included representative hydrocarbons and three very hydrophobic lubricant substances (logKow > 10). The toxicity data were used to evaluate existing predicted no-effect concentrations (PNECs) that had originally been derived with the target lipid model, which did not have these higher order chronic plant endpoints. The initial exposure concentrations were set at the PNECs to provide an independent validation of the PNEC. This evaluation was performed to expand the domain of applicability of the PNEC to VHOCs and for the chronic terrestrial plant endpoints. No effects were observed on plant biomass or inflorescence production at these low exposure concentrations, demonstrating that the established PNEC is protective of long-term plant health. The results of the present study confirm that the new dosing method is fit for purpose, and that the existing PNEC framework can be extended to chronic plant endpoints for VHOCs.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":8377,"journal":{"name":"Archives of Environmental Contamination and Toxicology","volume":"88 1","pages":"110 - 122"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783378/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Environmental Contamination and Toxicology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s00244-024-01106-5","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Environmental risk assessments of very hydrophobic organic compounds (VHOCs) in soils are often difficult because multiple processes (e.g., sorption, volatilization, biodegradation) can complicate the interpretation of results. A standardized soil dosing and aging procedure is presented for assessing bioavailability of VHOCs in a synthetic soil, which was used to evaluate the phytotoxicity of VHOCs. The soil preparation protocol resulted in relatively stable freely dissolved concentrations of test substance compared to bulk soil concentrations with some losses likely due to volatility and biodegradation. This dosing method was used in a chronic terrestrial plant toxicity bioassay to evaluate the potential toxicity of VHOCs on complex reproductive endpoints like inflorescence and seed bud formation. Testing included representative hydrocarbons and three very hydrophobic lubricant substances (logKow > 10). The toxicity data were used to evaluate existing predicted no-effect concentrations (PNECs) that had originally been derived with the target lipid model, which did not have these higher order chronic plant endpoints. The initial exposure concentrations were set at the PNECs to provide an independent validation of the PNEC. This evaluation was performed to expand the domain of applicability of the PNEC to VHOCs and for the chronic terrestrial plant endpoints. No effects were observed on plant biomass or inflorescence production at these low exposure concentrations, demonstrating that the established PNEC is protective of long-term plant health. The results of the present study confirm that the new dosing method is fit for purpose, and that the existing PNEC framework can be extended to chronic plant endpoints for VHOCs.
期刊介绍:
Archives of Environmental Contamination and Toxicology provides a place for the publication of timely, detailed, and definitive scientific studies pertaining to the source, transport, fate and / or effects of contaminants in the environment. The journal will consider submissions dealing with new analytical and toxicological techniques that advance our understanding of the source, transport, fate and / or effects of contaminants in the environment. AECT will now consider mini-reviews (where length including references is less than 5,000 words), which highlight case studies, a geographic topic of interest, or a timely subject of debate. AECT will also consider Special Issues on subjects of broad interest. The journal strongly encourages authors to ensure that their submission places a strong emphasis on ecosystem processes; submissions limited to technical aspects of such areas as toxicity testing for single chemicals, wastewater effluent characterization, human occupation exposure, or agricultural phytotoxicity are unlikely to be considered.