{"title":"Ultra-fast [<sup>18</sup>F]florbetapir PET imaging using the uMI Panorama PET/CT system.","authors":"Xueqian Yang, Meiqi Wu, Menglin Liang, Haiqiong Zhang, Bo Li, Chenhui Mao, Liling Dong, Yuan Wang, Haiqun Xing, Chao Ren, Zhenghai Huang, Qingxiang Wen, Qi Ge, Zhengqing Yu, Feng Feng, Jing Gao, Li Huo","doi":"10.1186/s40658-024-00712-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>There is a need for faster amyloid PET scans to reduce patients' discomfort, minimize movement artifacts, and increase throughput. The recently introduced uMI Panorama PET/CT system featuring enhanced spatial resolution and sub-200ps TOF offers the potential for shorter scan duration without sacrificing image quality or efficacy to detect Aβ deposition. The study aims to establish a faster acquisition protocol for [<sup>18</sup>F]florbetapir PET imaging using digital PET/CT scanner uMI Panorama, while ensuring adequate image quality and amyloid-β (Aβ) detectability comparable to the standard 10-minute scan.</p><p><strong>Methods: </strong>Thirty-eight participants (29 Aβ positive and 9 Aβ negative) from a prospective dementia cohort at Peking Union Medical University Hospital underwent routine [<sup>18</sup>F]florbetapir PET scans using the uMI Panorama PET/CT scanner and a T1-weighted brain MRI scan. List-mode PET data were reconstructed into durations of 10 min, 2 min, 1 min, 45 s, and 30 s (G10min, G2min, G1min, G45s, G30s). Two trained nuclear medicine physicians independently evaluated the image quality using a 5-point scale and provided binary diagnosis. Standardized uptake value ratios (SUVr) of the composite cortex (frontal, lateral parietal, lateral temporal, and cingulate cortices) were calculated to discriminate Aβ status and coefficient of variation assessed objective image quality. Comparisons of image quality and Aβ detectability between various fast scan groups and G10min group were conducted.</p><p><strong>Results: </strong>The subjective image quality evaluation and Aβ detectability results from the two physicians showed both good intra-reader and inter-reader agreements (Cohen's kappa coefficient: 0.759-1.000). The subjective and objective image qualities of the G2min scans were comparable to the G10min scans, whereas adequate image quality was achieved with the G1min and G45s scans (5-point score ≥ 3). Subjective visual diagnosis by two physicians yielded consistent accuracy for G10min, G2min, and G1min groups, but lower specificity for G45s and G30s groups. The objective detection of Aβ status by cortex SUVr across all scan durations maintained perfect discriminatory efficiency and relatively high effect size (Hedge's G: 2.48-2.54).</p><p><strong>Conclusions: </strong>A 1-min ultra-fast scan is feasible for [<sup>18</sup>F]florbetapir PET imaging using uMI Panorama PET/CT, while maintaining adequate image quality and Aβ diagnostic efficiency.</p><p><strong>Clinical trial registration: </strong>NCT05023564. Registered September 2022 https://clinicaltrials.gov/search?term=NCT05023564 .</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"107"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683033/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40658-024-00712-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: There is a need for faster amyloid PET scans to reduce patients' discomfort, minimize movement artifacts, and increase throughput. The recently introduced uMI Panorama PET/CT system featuring enhanced spatial resolution and sub-200ps TOF offers the potential for shorter scan duration without sacrificing image quality or efficacy to detect Aβ deposition. The study aims to establish a faster acquisition protocol for [18F]florbetapir PET imaging using digital PET/CT scanner uMI Panorama, while ensuring adequate image quality and amyloid-β (Aβ) detectability comparable to the standard 10-minute scan.
Methods: Thirty-eight participants (29 Aβ positive and 9 Aβ negative) from a prospective dementia cohort at Peking Union Medical University Hospital underwent routine [18F]florbetapir PET scans using the uMI Panorama PET/CT scanner and a T1-weighted brain MRI scan. List-mode PET data were reconstructed into durations of 10 min, 2 min, 1 min, 45 s, and 30 s (G10min, G2min, G1min, G45s, G30s). Two trained nuclear medicine physicians independently evaluated the image quality using a 5-point scale and provided binary diagnosis. Standardized uptake value ratios (SUVr) of the composite cortex (frontal, lateral parietal, lateral temporal, and cingulate cortices) were calculated to discriminate Aβ status and coefficient of variation assessed objective image quality. Comparisons of image quality and Aβ detectability between various fast scan groups and G10min group were conducted.
Results: The subjective image quality evaluation and Aβ detectability results from the two physicians showed both good intra-reader and inter-reader agreements (Cohen's kappa coefficient: 0.759-1.000). The subjective and objective image qualities of the G2min scans were comparable to the G10min scans, whereas adequate image quality was achieved with the G1min and G45s scans (5-point score ≥ 3). Subjective visual diagnosis by two physicians yielded consistent accuracy for G10min, G2min, and G1min groups, but lower specificity for G45s and G30s groups. The objective detection of Aβ status by cortex SUVr across all scan durations maintained perfect discriminatory efficiency and relatively high effect size (Hedge's G: 2.48-2.54).
Conclusions: A 1-min ultra-fast scan is feasible for [18F]florbetapir PET imaging using uMI Panorama PET/CT, while maintaining adequate image quality and Aβ diagnostic efficiency.
Clinical trial registration: NCT05023564. Registered September 2022 https://clinicaltrials.gov/search?term=NCT05023564 .
期刊介绍:
EJNMMI Physics is an international platform for scientists, users and adopters of nuclear medicine with a particular interest in physics matters. As a companion journal to the European Journal of Nuclear Medicine and Molecular Imaging, this journal has a multi-disciplinary approach and welcomes original materials and studies with a focus on applied physics and mathematics as well as imaging systems engineering and prototyping in nuclear medicine. This includes physics-driven approaches or algorithms supported by physics that foster early clinical adoption of nuclear medicine imaging and therapy.