Yan Yang, Xiaoke Guo, Jing Wang, Jing Li, Song Li, Jinliang Qiu, Haijun Wang, Hui Zhang, Hongling Yin
{"title":"Targeted screening, characterization and sources of per- and polyfluoroalkyl substances in plateau lake Yangzonghai, China.","authors":"Yan Yang, Xiaoke Guo, Jing Wang, Jing Li, Song Li, Jinliang Qiu, Haijun Wang, Hui Zhang, Hongling Yin","doi":"10.1007/s10653-024-02333-4","DOIUrl":null,"url":null,"abstract":"<p><p>Per- and polyfluoroalkyl substances (PFAS) have been detected in lake ecosystems globally, even in remote areas at high altitudes. Compared to plain lakes with short water change cycles and significant human influence, plateau lakes are primarily tectonic closed or semi-closed lakes with steep terrain. Their long water change cycles lead to an obvious cumulative effect on pollutants. In this study, a targeted screening method for 74 PFAS in aquatic environment was established. The contamination characteristics of PFAS in surface water samples (0.5 m below the water surface) and bottom samples (0.5 m above the lake bottom) of plateau Lake Yangzonghai were studied and compared to a reference site in Dianchi Lake which has been severely affected by anthropogenic sources. Results showed that 32 PFAS were detected in Lake Yangzonghai with the total concentration (∑<sub>32</sub>PFAS) ranging from 14.95 to 26.42 ng L<sup>-1</sup>. Among the 27 PFAS with available standards for accurate quantification, 22 PFAS were detected, with the concentration of ∑<sub>22</sub>PFAS ranging from 13.27 to 20.17 ng L<sup>-1</sup>. Significant differences (p < 0.05) in PFAS concentrations were observed between surface water (22.12 ng L<sup>-1</sup>) and bottom water (18.18 ng L<sup>-1</sup>), demonstrating a stratification phenomenon. The spatial differences in PFAS concentrations in surface water were minimal, indicating that the surface water was uniformly mixed with limited local disturbance from human pollution. The main PFAS monomers were perfluorooctanoic acid (PFOA), 8-3 fluorotelomer carboxylic acid (8-3 FTCA), perfluoroheptanoic acid (PFHpA) and 2H-perfluoro-2-decenoic acid (8-2 FTUCA), while PFBA was not detected. This distribution remarkably differed from many other plain lakes and the reference lake. Source apportionment analysis showed that PFAS primarily originated from atmospheric transport and precursor degradation. The results provide a background pollution level of PFAS in the plateau lake near the city and will benefit for formulating control policies.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 2","pages":"36"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02333-4","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been detected in lake ecosystems globally, even in remote areas at high altitudes. Compared to plain lakes with short water change cycles and significant human influence, plateau lakes are primarily tectonic closed or semi-closed lakes with steep terrain. Their long water change cycles lead to an obvious cumulative effect on pollutants. In this study, a targeted screening method for 74 PFAS in aquatic environment was established. The contamination characteristics of PFAS in surface water samples (0.5 m below the water surface) and bottom samples (0.5 m above the lake bottom) of plateau Lake Yangzonghai were studied and compared to a reference site in Dianchi Lake which has been severely affected by anthropogenic sources. Results showed that 32 PFAS were detected in Lake Yangzonghai with the total concentration (∑32PFAS) ranging from 14.95 to 26.42 ng L-1. Among the 27 PFAS with available standards for accurate quantification, 22 PFAS were detected, with the concentration of ∑22PFAS ranging from 13.27 to 20.17 ng L-1. Significant differences (p < 0.05) in PFAS concentrations were observed between surface water (22.12 ng L-1) and bottom water (18.18 ng L-1), demonstrating a stratification phenomenon. The spatial differences in PFAS concentrations in surface water were minimal, indicating that the surface water was uniformly mixed with limited local disturbance from human pollution. The main PFAS monomers were perfluorooctanoic acid (PFOA), 8-3 fluorotelomer carboxylic acid (8-3 FTCA), perfluoroheptanoic acid (PFHpA) and 2H-perfluoro-2-decenoic acid (8-2 FTUCA), while PFBA was not detected. This distribution remarkably differed from many other plain lakes and the reference lake. Source apportionment analysis showed that PFAS primarily originated from atmospheric transport and precursor degradation. The results provide a background pollution level of PFAS in the plateau lake near the city and will benefit for formulating control policies.
期刊介绍:
Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people.
Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes.
The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.