{"title":"Assessment of mechanical properties and microstructure of Co-Cr dental alloys manufactured by casting, milling, and 3D printing.","authors":"Ana Schettini, Igor J Pesun, Rodrigo França","doi":"10.1016/j.prosdent.2024.12.017","DOIUrl":null,"url":null,"abstract":"<p><strong>Statement of problem: </strong>The mechanical properties and microstructure of cobalt chromium (Co-Cr) alloys should be considered when choosing the best alloy for each clinical situation. More information is needed on the digital manufacturing methods of metals in dentistry, such as computer numerical control (CNC), and direct laser metal sintering (DMLS).</p><p><strong>Purpose: </strong>The aim of this study was to investigate the effect of the 3 different Co-Cr manufacturing processes on the mechanical properties and microstructure of Co-Cr dental alloys.</p><p><strong>Material and methods: </strong>Dumbbell-shaped specimens (n=6) were fabricated using casting (CAST), CNC, and DMLS techniques. Tensile, 3-point bend, and microhardness testing were performed, and the microstructure evaluated through scanning electron microscopy, energy dispersive X-ray analysis, and X-ray diffraction analysis. The ANOVA test followed by post hoc Tukey tests were used for statistical analysis (α=.05).</p><p><strong>Results: </strong>DMLS showed the greatest values for 0.2% yield strength (908.0 ±13.1 MPa), tensile strength (1123.7 ±6.5 MPa), flexural strength (2273.0 ±43.2 MPa), and microhardness (438.2 ±44.9 HV), followed by CAST and CNC. No statistical differences were found for elongation between CNC and DMLS or DMLS and CAST (P>.05). No statistical differences were found in elastic modulus among all groups (P>.05). EDX revealed a slightly different chemical composition among the groups. XRD showed face-centered cubic as the dominant phase and a small amount of hexagonal close-packed structure in all groups. A peak of σ phase was identified in the CAST group.</p><p><strong>Conclusions: </strong>The mechanical properties and microstructures of Co-Cr dental alloys were significantly influenced by the fabrication method used. DMLS and CNC milling produced better products that traditional methods, leading to the improved durability and reliability of dental prostheses. These advancements underscore the importance of selecting appropriate fabrication methods to optimize clinical outcomes and patient satisfaction.</p>","PeriodicalId":16866,"journal":{"name":"Journal of Prosthetic Dentistry","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Prosthetic Dentistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.prosdent.2024.12.017","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Statement of problem: The mechanical properties and microstructure of cobalt chromium (Co-Cr) alloys should be considered when choosing the best alloy for each clinical situation. More information is needed on the digital manufacturing methods of metals in dentistry, such as computer numerical control (CNC), and direct laser metal sintering (DMLS).
Purpose: The aim of this study was to investigate the effect of the 3 different Co-Cr manufacturing processes on the mechanical properties and microstructure of Co-Cr dental alloys.
Material and methods: Dumbbell-shaped specimens (n=6) were fabricated using casting (CAST), CNC, and DMLS techniques. Tensile, 3-point bend, and microhardness testing were performed, and the microstructure evaluated through scanning electron microscopy, energy dispersive X-ray analysis, and X-ray diffraction analysis. The ANOVA test followed by post hoc Tukey tests were used for statistical analysis (α=.05).
Results: DMLS showed the greatest values for 0.2% yield strength (908.0 ±13.1 MPa), tensile strength (1123.7 ±6.5 MPa), flexural strength (2273.0 ±43.2 MPa), and microhardness (438.2 ±44.9 HV), followed by CAST and CNC. No statistical differences were found for elongation between CNC and DMLS or DMLS and CAST (P>.05). No statistical differences were found in elastic modulus among all groups (P>.05). EDX revealed a slightly different chemical composition among the groups. XRD showed face-centered cubic as the dominant phase and a small amount of hexagonal close-packed structure in all groups. A peak of σ phase was identified in the CAST group.
Conclusions: The mechanical properties and microstructures of Co-Cr dental alloys were significantly influenced by the fabrication method used. DMLS and CNC milling produced better products that traditional methods, leading to the improved durability and reliability of dental prostheses. These advancements underscore the importance of selecting appropriate fabrication methods to optimize clinical outcomes and patient satisfaction.
期刊介绍:
The Journal of Prosthetic Dentistry is the leading professional journal devoted exclusively to prosthetic and restorative dentistry. The Journal is the official publication for 24 leading U.S. international prosthodontic organizations. The monthly publication features timely, original peer-reviewed articles on the newest techniques, dental materials, and research findings. The Journal serves prosthodontists and dentists in advanced practice, and features color photos that illustrate many step-by-step procedures. The Journal of Prosthetic Dentistry is included in Index Medicus and CINAHL.