Cross-alignment of silver nanowires network for efficient nanowelding.

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanotechnology Pub Date : 2024-12-31 DOI:10.1088/1361-6528/ada449
Chao Wang, Bo Song, Xin Zhai, Che Zhang, Mengyang Du, Yanqin Miao, Peng Dong
{"title":"Cross-alignment of silver nanowires network for efficient nanowelding.","authors":"Chao Wang, Bo Song, Xin Zhai, Che Zhang, Mengyang Du, Yanqin Miao, Peng Dong","doi":"10.1088/1361-6528/ada449","DOIUrl":null,"url":null,"abstract":"<p><p>The performance of sliver nanowire (AgNWs) network flexible transparent electrodes is limited by large contact resistance, making it necessary to perform nanowelding to improve conductivity of the network. However, not all nanowire junctions can be welded. Our work indicates that the welding kinetics between nanowires depend on the crossing angle, with higher surface diffusion velocity prone to welding and fracture at nanowire junctions of crossing angles close to 90 degrees. The impact of nanowire crossing angles on the welding process makes it difficult to achieve simultaneous welding of random AgNWs networks. To address this issue, we adopted an improved Meyer rod coating method to prepared a cross-aligned nanowire network based on a layer-by-layer assembly strategy. Compared to randomly distributed AgNWs networks (11.17Ω/sq, 85.2%), the cross-aligned AgNWs network achieved simultaneous welding of nanowire junctions during thermal annealing, further enhancing the optoelectronic performance (10.8Ω/sq, 90.3%) of the AgNWs network, resulting in a superior figure of merit (FoM) value of 421.&#xD.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ada449","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The performance of sliver nanowire (AgNWs) network flexible transparent electrodes is limited by large contact resistance, making it necessary to perform nanowelding to improve conductivity of the network. However, not all nanowire junctions can be welded. Our work indicates that the welding kinetics between nanowires depend on the crossing angle, with higher surface diffusion velocity prone to welding and fracture at nanowire junctions of crossing angles close to 90 degrees. The impact of nanowire crossing angles on the welding process makes it difficult to achieve simultaneous welding of random AgNWs networks. To address this issue, we adopted an improved Meyer rod coating method to prepared a cross-aligned nanowire network based on a layer-by-layer assembly strategy. Compared to randomly distributed AgNWs networks (11.17Ω/sq, 85.2%), the cross-aligned AgNWs network achieved simultaneous welding of nanowire junctions during thermal annealing, further enhancing the optoelectronic performance (10.8Ω/sq, 90.3%) of the AgNWs network, resulting in a superior figure of merit (FoM) value of 421. .

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
期刊最新文献
Electrically-driven control of nanoscale chemical changes in amorphous complex oxide memristive devices. Preparation of novel B/ZnO/zeolite nanocomposites by simple combustion method for enhanced dye removal in an aqueous environment. Electrochemical deposition of Ni on arrays of GaAs nanowires with n-type channels. Electroisomerization blinking of an azobenzene derivative molecule. Fabrication of strain-sensing fibers with silver nanoparticles and reduced graphene oxide via wet spinning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1