{"title":"Nuclear Magnetic Resonance Spectroscopy to Study Virus Structure.","authors":"José L Neira","doi":"10.1007/978-3-031-65187-8_5","DOIUrl":null,"url":null,"abstract":"<p><p>Nuclear magnetic resonance (NMR) is a spectroscopic technique based on the absorption of radiofrequency radiation by atomic nuclei in the presence of an external magnetic field. NMR has followed a \"bottom-up\" approach to solve the structures of isolated domains of viral proteins, including capsid protein subunits, or to provide information about other macromolecular partners with which such proteins interact. NMR has been instrumental in describing conformational changes in viral proteins and nucleic acids, showing the presence of dynamic equilibria which are thought to be important at different stages of the virus life cycle. In this sense, NMR is also the only technique currently available to describe, in atomic detail, the conformational preferences of intrinsically disordered viral proteins. Furthermore, NMR can provide insights into the thermodynamic parameters governing binding reactions between different viral macromolecules. NMR has also complemented X-ray crystallography and has been combined with electron microscopy to obtain pseudo-atomic models of entire virus capsids. Finally, the joint use of liquid and solid-state NMR has allowed the identification of conformational changes in viral capsids upon insertion into host membranes.</p>","PeriodicalId":21991,"journal":{"name":"Sub-cellular biochemistry","volume":"105 ","pages":"171-206"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sub-cellular biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-65187-8_5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Nuclear magnetic resonance (NMR) is a spectroscopic technique based on the absorption of radiofrequency radiation by atomic nuclei in the presence of an external magnetic field. NMR has followed a "bottom-up" approach to solve the structures of isolated domains of viral proteins, including capsid protein subunits, or to provide information about other macromolecular partners with which such proteins interact. NMR has been instrumental in describing conformational changes in viral proteins and nucleic acids, showing the presence of dynamic equilibria which are thought to be important at different stages of the virus life cycle. In this sense, NMR is also the only technique currently available to describe, in atomic detail, the conformational preferences of intrinsically disordered viral proteins. Furthermore, NMR can provide insights into the thermodynamic parameters governing binding reactions between different viral macromolecules. NMR has also complemented X-ray crystallography and has been combined with electron microscopy to obtain pseudo-atomic models of entire virus capsids. Finally, the joint use of liquid and solid-state NMR has allowed the identification of conformational changes in viral capsids upon insertion into host membranes.
期刊介绍:
The book series SUBCELLULAR BIOCHEMISTRY is a renowned and well recognized forum for disseminating advances of emerging topics in Cell Biology and related subjects. All volumes are edited by established scientists and the individual chapters are written by experts on the relevant topic. The individual chapters of each volume are fully citable and indexed in Medline/Pubmed to ensure maximum visibility of the work.