{"title":"X-Ray Crystallography of Viruses.","authors":"Núria Verdaguer, Cristina Ferrer-Orta, Damià Garriga","doi":"10.1007/978-3-031-65187-8_4","DOIUrl":null,"url":null,"abstract":"<p><p>Since the 1970s and for about 40 years, X-ray crystallography has been by far the most powerful approach for determining virus structures at close to atomic resolutions. Information provided by these studies has deeply and extensively enriched and shaped our vision of the virus world. In turn, the ever-increasing complexity and size of the virus structures being investigated have constituted a major driving force for methodological and conceptual developments in X-ray macromolecular crystallography (MX). Landmarks of the structure determination of viral particles, such as the ones from the first animal viruses or from the first membrane-containing viruses, have often been associated with methodological breakthroughs in X-ray crystallography.In recent years, the advent of new detectors with fast frame rate, high sensitivity, and low-noise background has changed the way MX data is collected, enabling new types of studies at X-ray free-electron laser and synchrotron facilities. In parallel, a very high degree of automation has been established at most MX synchrotron beamlines, allowing the screening of large number of crystals with very high throughputs. This has proved crucial for fragment-based drug design projects, of special relevance for the identification of new antiviral drugs.This change in the usage of X-ray crystallography is also mirrored in the recent advances in cryo-electron microscopy (cryo-EM), which can nowadays produce macromolecule structures at resolutions comparable to those obtained by MX. Since this technique is especially amenable for large protein assemblies, cryo-EM has progressively turned into the favored technique to study the structure of large viral particles at high resolution.In this chapter, we present the common ground of proteins and virus crystallography with an emphasis in the peculiarities of virus-related studies.</p>","PeriodicalId":21991,"journal":{"name":"Sub-cellular biochemistry","volume":"105 ","pages":"135-169"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sub-cellular biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-65187-8_4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Since the 1970s and for about 40 years, X-ray crystallography has been by far the most powerful approach for determining virus structures at close to atomic resolutions. Information provided by these studies has deeply and extensively enriched and shaped our vision of the virus world. In turn, the ever-increasing complexity and size of the virus structures being investigated have constituted a major driving force for methodological and conceptual developments in X-ray macromolecular crystallography (MX). Landmarks of the structure determination of viral particles, such as the ones from the first animal viruses or from the first membrane-containing viruses, have often been associated with methodological breakthroughs in X-ray crystallography.In recent years, the advent of new detectors with fast frame rate, high sensitivity, and low-noise background has changed the way MX data is collected, enabling new types of studies at X-ray free-electron laser and synchrotron facilities. In parallel, a very high degree of automation has been established at most MX synchrotron beamlines, allowing the screening of large number of crystals with very high throughputs. This has proved crucial for fragment-based drug design projects, of special relevance for the identification of new antiviral drugs.This change in the usage of X-ray crystallography is also mirrored in the recent advances in cryo-electron microscopy (cryo-EM), which can nowadays produce macromolecule structures at resolutions comparable to those obtained by MX. Since this technique is especially amenable for large protein assemblies, cryo-EM has progressively turned into the favored technique to study the structure of large viral particles at high resolution.In this chapter, we present the common ground of proteins and virus crystallography with an emphasis in the peculiarities of virus-related studies.
期刊介绍:
The book series SUBCELLULAR BIOCHEMISTRY is a renowned and well recognized forum for disseminating advances of emerging topics in Cell Biology and related subjects. All volumes are edited by established scientists and the individual chapters are written by experts on the relevant topic. The individual chapters of each volume are fully citable and indexed in Medline/Pubmed to ensure maximum visibility of the work.