Liangchen Liu , Jianfei Liu , Bikash Santra , Christopher Parnell , Pritam Mukherjee , Tejas Mathai , Yingying Zhu , Akshaya Anand , Ronald M. Summers
{"title":"Utilizing domain knowledge to improve the classification of intravenous contrast phase of CT scans","authors":"Liangchen Liu , Jianfei Liu , Bikash Santra , Christopher Parnell , Pritam Mukherjee , Tejas Mathai , Yingying Zhu , Akshaya Anand , Ronald M. Summers","doi":"10.1016/j.compmedimag.2024.102458","DOIUrl":null,"url":null,"abstract":"<div><div>Multiple intravenous contrast phases of CT scans are commonly used in clinical practice to facilitate disease diagnosis. However, contrast phase information is commonly missing or incorrect due to discrepancies in CT series descriptions and imaging practices. This work aims to develop a classification algorithm to automatically determine the contrast phase of a CT scan. We hypothesize that image intensities of key organs (e.g. aorta, inferior vena cava) affected by contrast enhancement are inherent feature information to decide the contrast phase. These organs are segmented by TotalSegmentator followed by generating intensity features on each segmented organ region. Two internal and one external dataset were collected to validate the classification accuracy. In comparison with the baseline ResNet classification method that did not make use of key organs features, the proposed method achieved the comparable accuracy of 92.5% and F1 score of 92.5% in one internal dataset. The accuracy was improved from 63.9% to 79.8% and F1 score from 43.9% to 65.0% using the proposed method on the other internal dataset. The accuracy improved from 63.5% to 85.1% and the F1 score from 56.4% to 83.9% on the external dataset. Image intensity features from key organs are critical for improving the classification accuracy of contrast phases of CT scans. The classification method based on these features is robust to different scanners and imaging protocols from different institutes. Our results suggested improved classification accuracy over existing approaches, which advances the application of automatic contrast phase classification toward real clinical practice. The code for this work can be found here: (<span><span>https://github.com/rsummers11/CT_Contrast_Phase_Classifier</span><svg><path></path></svg></span>).</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"119 ","pages":"Article 102458"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611124001356","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Multiple intravenous contrast phases of CT scans are commonly used in clinical practice to facilitate disease diagnosis. However, contrast phase information is commonly missing or incorrect due to discrepancies in CT series descriptions and imaging practices. This work aims to develop a classification algorithm to automatically determine the contrast phase of a CT scan. We hypothesize that image intensities of key organs (e.g. aorta, inferior vena cava) affected by contrast enhancement are inherent feature information to decide the contrast phase. These organs are segmented by TotalSegmentator followed by generating intensity features on each segmented organ region. Two internal and one external dataset were collected to validate the classification accuracy. In comparison with the baseline ResNet classification method that did not make use of key organs features, the proposed method achieved the comparable accuracy of 92.5% and F1 score of 92.5% in one internal dataset. The accuracy was improved from 63.9% to 79.8% and F1 score from 43.9% to 65.0% using the proposed method on the other internal dataset. The accuracy improved from 63.5% to 85.1% and the F1 score from 56.4% to 83.9% on the external dataset. Image intensity features from key organs are critical for improving the classification accuracy of contrast phases of CT scans. The classification method based on these features is robust to different scanners and imaging protocols from different institutes. Our results suggested improved classification accuracy over existing approaches, which advances the application of automatic contrast phase classification toward real clinical practice. The code for this work can be found here: (https://github.com/rsummers11/CT_Contrast_Phase_Classifier).
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.