Developing and Comparing Four Families of Bayesian Network Autocorrelation Models for Binary Outcomes: Estimating Peer Effects Involving Adoption of Medical Technologies.

IF 1.3 3区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Biometrical Journal Pub Date : 2025-02-01 DOI:10.1002/bimj.70030
Guanqing Chen, A James O'Malley
{"title":"Developing and Comparing Four Families of Bayesian Network Autocorrelation Models for Binary Outcomes: Estimating Peer Effects Involving Adoption of Medical Technologies.","authors":"Guanqing Chen, A James O'Malley","doi":"10.1002/bimj.70030","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the extensive use of network autocorrelation models in social network analysis, network autocorrelation models for binary dependent variables have received surprisingly scant attention. In this paper, we develop four network autocorrelation models for a binary random variable defined by whether the peer effect (also termed social influence or contagion) acts on latent continuous outcomes leading to an indirect effect under a normal or a logistic distribution or on the probability of the observed outcome itself under a probit or a logit link function defining a direct effect to account for interdependence between outcomes. For all models, we use a Bayesian approach for model estimation under a uniform prior on a transformed peer effect parameter ( <math><semantics><mi>ρ</mi> <annotation>$\\rho$</annotation></semantics> </math> ) designed to enhance model computation and compare results to those under the uniform prior for <math><semantics><mi>ρ</mi> <annotation>$\\rho$</annotation></semantics> </math> . We use simulation to assess the performance of Bayesian point and interval estimators for each of the four models when the model that generated the data is used for estimation (precision assessment) and when each of the other three models instead generated the data (robustness assessment). We construct a United States New England region patient-sharing hospital network and apply the four network autocorrelation models to study the adoption of robotic surgery, a new medical technology, among hospitals using a cohort of United States Medicare beneficiaries in 2016 and 2017. Finally, we develop a deviance information criterion for each of the four models to compare their fit to the observed data and use posterior predictive p-values to assess the models' ability to recover specified features of the data. The results find that although the indirect peer effect of the propensity of peer hospital adoption on that of the focal hospital is positive under both latent response autocorrelation models, the direct peer effect of the peer hospital's probability of adopting robotic surgery on the probability of the focal hospital adopting robotic surgery decreases under both mean autocorrelation data models. However, neither of these associations is statistically significant.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"67 1","pages":"e70030"},"PeriodicalIF":1.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/bimj.70030","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the extensive use of network autocorrelation models in social network analysis, network autocorrelation models for binary dependent variables have received surprisingly scant attention. In this paper, we develop four network autocorrelation models for a binary random variable defined by whether the peer effect (also termed social influence or contagion) acts on latent continuous outcomes leading to an indirect effect under a normal or a logistic distribution or on the probability of the observed outcome itself under a probit or a logit link function defining a direct effect to account for interdependence between outcomes. For all models, we use a Bayesian approach for model estimation under a uniform prior on a transformed peer effect parameter ( ρ $\rho$ ) designed to enhance model computation and compare results to those under the uniform prior for ρ $\rho$ . We use simulation to assess the performance of Bayesian point and interval estimators for each of the four models when the model that generated the data is used for estimation (precision assessment) and when each of the other three models instead generated the data (robustness assessment). We construct a United States New England region patient-sharing hospital network and apply the four network autocorrelation models to study the adoption of robotic surgery, a new medical technology, among hospitals using a cohort of United States Medicare beneficiaries in 2016 and 2017. Finally, we develop a deviance information criterion for each of the four models to compare their fit to the observed data and use posterior predictive p-values to assess the models' ability to recover specified features of the data. The results find that although the indirect peer effect of the propensity of peer hospital adoption on that of the focal hospital is positive under both latent response autocorrelation models, the direct peer effect of the peer hospital's probability of adopting robotic surgery on the probability of the focal hospital adopting robotic surgery decreases under both mean autocorrelation data models. However, neither of these associations is statistically significant.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biometrical Journal
Biometrical Journal 生物-数学与计算生物学
CiteScore
3.20
自引率
5.90%
发文量
119
审稿时长
6-12 weeks
期刊介绍: Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.
期刊最新文献
A Preplanned Multi-Stage Platform Trial for Discovering Multiple Superior Treatments With Control of FWER and Power. Developing and Comparing Four Families of Bayesian Network Autocorrelation Models for Binary Outcomes: Estimating Peer Effects Involving Adoption of Medical Technologies. Sensitivity Analysis for Effects of Multiple Exposures in the Presence of Unmeasured Confounding. Quantification of Difference in Nonselectivity Between In Vitro Diagnostic Medical Devices. Investigating a Domain Adaptation Approach for Integrating Different Measurement Instruments in a Longitudinal Clinical Registry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1