Devaki Pilapitiya , Wen Shi Lee , Mai N. Vu , Andrew Kelly , Rosela H. Webster , Marios Koutsakos , Stephen J. Kent , Jennifer A. Juno , Hyon-Xhi Tan , Adam K. Wheatley
{"title":"Mucosal vaccination against SARS-CoV-2 using recombinant influenza viruses delivering self-assembling nanoparticles","authors":"Devaki Pilapitiya , Wen Shi Lee , Mai N. Vu , Andrew Kelly , Rosela H. Webster , Marios Koutsakos , Stephen J. Kent , Jennifer A. Juno , Hyon-Xhi Tan , Adam K. Wheatley","doi":"10.1016/j.vaccine.2024.126668","DOIUrl":null,"url":null,"abstract":"<div><div>Recombinant influenza viruses are promising vectors that can bolster antibody and resident lymphocyte responses within mucosal sites. This study evaluates recombinant influenza viruses with SARS-CoV-2 RBD genes in eliciting mucosal and systemic responses. Using reverse genetics, we generated replication-competent recombinant influenza viruses carrying heterologous RBD genes in monomeric, trimeric, or ferritin-based nanoparticle forms. Following intranasal immunisation, mice developed potent serological anti-RBD responses, with ferritin nanoparticles superseding monomeric or trimeric RBD responses. While parenteral and mucosal immunisation elicited robust anti-RBD IgG in serum, mucosal immunisation seeded respiratory IgA, RBD-specific lung-resident memory and germinal centre (GC) B cells. In animals with prior intramuscular vaccination, intranasal boosting with recombinant influenza vectors augmented mucosal IgG, IgA, GC and memory B cells, and SARS-CoV-2 lung neutralising titres. Recall of RBD-specific memory B cells via antigen re-exposure in the lung increased antibody-secreting cells in the lung-draining lymph nodes, with maintenance of lung GC B cells. Recombinant influenza-based vaccines effectively deliver highly immunogenic self-assembling nanoparticles, generating antibodies and B cells in the respiratory mucosa. This strategy provides a tractable pathway to augment lung-localised responses against recurrent respiratory viral infections.</div></div>","PeriodicalId":23491,"journal":{"name":"Vaccine","volume":"46 ","pages":"Article 126668"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vaccine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264410X24013501","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recombinant influenza viruses are promising vectors that can bolster antibody and resident lymphocyte responses within mucosal sites. This study evaluates recombinant influenza viruses with SARS-CoV-2 RBD genes in eliciting mucosal and systemic responses. Using reverse genetics, we generated replication-competent recombinant influenza viruses carrying heterologous RBD genes in monomeric, trimeric, or ferritin-based nanoparticle forms. Following intranasal immunisation, mice developed potent serological anti-RBD responses, with ferritin nanoparticles superseding monomeric or trimeric RBD responses. While parenteral and mucosal immunisation elicited robust anti-RBD IgG in serum, mucosal immunisation seeded respiratory IgA, RBD-specific lung-resident memory and germinal centre (GC) B cells. In animals with prior intramuscular vaccination, intranasal boosting with recombinant influenza vectors augmented mucosal IgG, IgA, GC and memory B cells, and SARS-CoV-2 lung neutralising titres. Recall of RBD-specific memory B cells via antigen re-exposure in the lung increased antibody-secreting cells in the lung-draining lymph nodes, with maintenance of lung GC B cells. Recombinant influenza-based vaccines effectively deliver highly immunogenic self-assembling nanoparticles, generating antibodies and B cells in the respiratory mucosa. This strategy provides a tractable pathway to augment lung-localised responses against recurrent respiratory viral infections.
期刊介绍:
Vaccine is unique in publishing the highest quality science across all disciplines relevant to the field of vaccinology - all original article submissions across basic and clinical research, vaccine manufacturing, history, public policy, behavioral science and ethics, social sciences, safety, and many other related areas are welcomed. The submission categories as given in the Guide for Authors indicate where we receive the most papers. Papers outside these major areas are also welcome and authors are encouraged to contact us with specific questions.