Anomalous increase in thermal conductivity of Mg solid solutions by co-doping with two solute elements

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Acta Materialia Pub Date : 2025-01-02 DOI:10.1016/j.actamat.2025.120708
Zixin Li, Bo Hu, Fanjin Yao, Zhenfei Jiang, Junfu Zhang, Qianxi Zhang, Jiaxuan Han, Liping Zhou, Fangyuan Sun, Xiaoqin Zeng, Dejiang Li
{"title":"Anomalous increase in thermal conductivity of Mg solid solutions by co-doping with two solute elements","authors":"Zixin Li, Bo Hu, Fanjin Yao, Zhenfei Jiang, Junfu Zhang, Qianxi Zhang, Jiaxuan Han, Liping Zhou, Fangyuan Sun, Xiaoqin Zeng, Dejiang Li","doi":"10.1016/j.actamat.2025.120708","DOIUrl":null,"url":null,"abstract":"Solute atoms inevitably induce lattice distortion in solid solution (matrix), thereby prompting the widespread belief that minimizing solute atom concentration within the Mg matrix (solid solution) is imperative in designing high thermal conductivity Mg alloys. Nevertheless, the aforementioned design approach is summarized from experimental perspectives. This study reveals, for the first time, the direct factors influencing thermal conductivity—specifically, electron motion ability (free electron density (<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi is=\"true\"&gt;n&lt;/mi&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.394ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -498.8 600.5 600.2\" width=\"1.395ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-6E\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">n</mi></math></span></span><script type=\"math/mml\"><math><mi is=\"true\">n</mi></math></script></span>) and mean free path of free electrons near the Fermi surface (<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub is=\"true\"&gt;&lt;mi is=\"true\"&gt;l&lt;/mi&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;F&lt;/mi&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.432ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -796.9 860.6 1047.3\" width=\"1.999ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-6C\"></use></g><g is=\"true\" transform=\"translate(298,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-46\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">l</mi><mi is=\"true\" mathvariant=\"normal\">F</mi></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mi is=\"true\">l</mi><mi mathvariant=\"normal\" is=\"true\">F</mi></msub></math></script></span>))—from a physical essence standpoint. A quantitative physical model of thermal conductivity incorporating these two factors has been established. It is demonstrated that by doping two specific solute elements (one with a larger atomic volume than that of Mg, and the other with a smaller atomic volume than that of Mg; The binding force between the two types of solute atoms must exceed their individual binding forces with Mg) into the Mg matrix could possibly enhance <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub is=\"true\"&gt;&lt;mi is=\"true\"&gt;l&lt;/mi&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;F&lt;/mi&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.432ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -796.9 860.6 1047.3\" width=\"1.999ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-6C\"></use></g><g is=\"true\" transform=\"translate(298,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-46\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">l</mi><mi is=\"true\" mathvariant=\"normal\">F</mi></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mi is=\"true\">l</mi><mi mathvariant=\"normal\" is=\"true\">F</mi></msub></math></script></span>, thereby improving the thermal conductivity of Mg solid solutions. The method was successfully applied to MgSm(Al) solid solutions and achieved an anomalous increase in thermal conductivity. This suggests that designing high thermal conductivity Mg alloys may not require reducing the concentration of solute atoms in the Mg matrix. This discovery challenges the traditional approach to designing high thermal conductivity Mg alloys and presents broader opportunities for enhancing the diversity and performance of high thermal conductivity Mg alloy systems.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"16 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2025.120708","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solute atoms inevitably induce lattice distortion in solid solution (matrix), thereby prompting the widespread belief that minimizing solute atom concentration within the Mg matrix (solid solution) is imperative in designing high thermal conductivity Mg alloys. Nevertheless, the aforementioned design approach is summarized from experimental perspectives. This study reveals, for the first time, the direct factors influencing thermal conductivity—specifically, electron motion ability (free electron density (n) and mean free path of free electrons near the Fermi surface (lF))—from a physical essence standpoint. A quantitative physical model of thermal conductivity incorporating these two factors has been established. It is demonstrated that by doping two specific solute elements (one with a larger atomic volume than that of Mg, and the other with a smaller atomic volume than that of Mg; The binding force between the two types of solute atoms must exceed their individual binding forces with Mg) into the Mg matrix could possibly enhance lF, thereby improving the thermal conductivity of Mg solid solutions. The method was successfully applied to MgSm(Al) solid solutions and achieved an anomalous increase in thermal conductivity. This suggests that designing high thermal conductivity Mg alloys may not require reducing the concentration of solute atoms in the Mg matrix. This discovery challenges the traditional approach to designing high thermal conductivity Mg alloys and presents broader opportunities for enhancing the diversity and performance of high thermal conductivity Mg alloy systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
期刊最新文献
Interpretable and Physics-Informed Modeling of Solidification in Alloy Systems: A Generalized Framework for Multi-Component Prediction Re enhancement effects: Development of a ReaxFFNiAlRe reactive force field for Ni-based superalloys On modeling global grain boundary energy functions Microstructural analysis and its correlation to anneal hardening in a cobalt-nickel-based superalloy Single-crystalline Ni-based superalloy builds using laser-directed energy deposition (L-DED): A multi-scale modeling and experimental approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1