Direct Synthesis of Unprotected C-Glycosides via Photoredox Activation of Glycosyl Ester

IF 4.9 1区 化学 Q1 CHEMISTRY, ORGANIC Organic Letters Pub Date : 2025-01-02 DOI:10.1021/acs.orglett.4c04475
Chang Chin Ho, Haiqi Wang, Guanjie Wang, Yonggui Robin Chi
{"title":"Direct Synthesis of Unprotected C-Glycosides via Photoredox Activation of Glycosyl Ester","authors":"Chang Chin Ho, Haiqi Wang, Guanjie Wang, Yonggui Robin Chi","doi":"10.1021/acs.orglett.4c04475","DOIUrl":null,"url":null,"abstract":"Synthetic C-glycosides play a crucial role in molecular biology and medicine. With the surge of interest in C-glycosides and the demand to provide efforts with sufficient feedstock, it is highly significant to pursue novel methodologies to access C-glycosides in a concise and efficient manner. Here, we disclose an attractive strategy that diverges itself from conventional multistep reaction sequences involving the manipulations of protecting groups. Widely available native sugars first react with 1,4-dihydropyridine acids via a site-selective Mitsunobu reaction, converting them into bench-stable radical precursors. Under visible-light-enabled photoredox catalysis conditions, the resulting glycosyl radicals undergo C–C bond formation reactions, yielding a variety of C-glycosides with excellent stereoselectivity. Our method demonstrates good tolerance to a wide range of functional groups and has been successfully applied in the post-transformation of drug molecules and the preparation of C-glycosyl amino acids.","PeriodicalId":54,"journal":{"name":"Organic Letters","volume":"93 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.orglett.4c04475","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

Synthetic C-glycosides play a crucial role in molecular biology and medicine. With the surge of interest in C-glycosides and the demand to provide efforts with sufficient feedstock, it is highly significant to pursue novel methodologies to access C-glycosides in a concise and efficient manner. Here, we disclose an attractive strategy that diverges itself from conventional multistep reaction sequences involving the manipulations of protecting groups. Widely available native sugars first react with 1,4-dihydropyridine acids via a site-selective Mitsunobu reaction, converting them into bench-stable radical precursors. Under visible-light-enabled photoredox catalysis conditions, the resulting glycosyl radicals undergo C–C bond formation reactions, yielding a variety of C-glycosides with excellent stereoselectivity. Our method demonstrates good tolerance to a wide range of functional groups and has been successfully applied in the post-transformation of drug molecules and the preparation of C-glycosyl amino acids.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Organic Letters
Organic Letters 化学-有机化学
CiteScore
9.30
自引率
11.50%
发文量
1607
审稿时长
1.5 months
期刊介绍: Organic Letters invites original reports of fundamental research in all branches of the theory and practice of organic, physical organic, organometallic,medicinal, and bioorganic chemistry. Organic Letters provides rapid disclosure of the key elements of significant studies that are of interest to a large portion of the organic community. In selecting manuscripts for publication, the Editors place emphasis on the originality, quality and wide interest of the work. Authors should provide enough background information to place the new disclosure in context and to justify the rapid publication format. Back-to-back Letters will be considered. Full details should be reserved for an Article, which should appear in due course.
期刊最新文献
Rhodium-Catalyzed Allylic Amination for the Enantioselective Synthesis of Tertiary β-Fluoroamines Solvent-Controlled Cascade Reaction of SeO2, Sulfonyl Hydrazides and Alkynes for Chemoselective Access to Symmetric Divinyl Sulfones Substituted Seleniums and Diseleniums Synthesis of Polysubstituted Benzo[b][1,5]naphthyridine via Mn(III)-Mediated Domino Cascade Reactions of Cyclopropanols and 2-(2-Isocyanophenyl)acetonitriles Spirochrains A–D, Four Caged [5,6,5] Spirocyclic Amides from an Antarctic Fungus Aspergillus ochraceopetaliformis SCSIO 05702 with Anti-RSV Activities Polyfluoroalkanoic Acids as Fluoroalkylating Reagents: Strategy for Direct Access to Rf-Embedded Amides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1