Type-Transformational BioHJzyme Enabled by Composition Modulation-Mediated Energy Band Engineering for Diabetic Infectious Wound Healing

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2025-01-02 DOI:10.1002/adfm.202421228
Miaomiao He, Zuyao Wang, Dan Sun, Yi Deng, Weizhong Yang, Guangfu Yin
{"title":"Type-Transformational BioHJzyme Enabled by Composition Modulation-Mediated Energy Band Engineering for Diabetic Infectious Wound Healing","authors":"Miaomiao He,&nbsp;Zuyao Wang,&nbsp;Dan Sun,&nbsp;Yi Deng,&nbsp;Weizhong Yang,&nbsp;Guangfu Yin","doi":"10.1002/adfm.202421228","DOIUrl":null,"url":null,"abstract":"<p>The dilemma of diabetic infectious wound healing lies in inhibiting the pathogenic colonization and regulating the hyperglycemia. The pivotal anti-pathogenic efficiency is focused on the confined and gradually weaken reactive oxygen species (ROS) yield in the peculiar micromilieu owing to the materials transformation/dissolution. There, the type-transformational bio-heterojunction enzyme (BioHJzyme) with operando composition-modulation is proposed, which is consisted by glucose oxidase (GOx) decorated type-I FeSe<sub>2</sub>/Cu<sub>2</sub>O heterojunction. It exhibits robust catalytic efficiency to produce ROS. Followed, the type-I heterojunction can be transformed into dual Z-scheme heterojunction with a composition of FeSe<sub>2</sub>/CuSe/Cu<sub>2</sub>O primed by the infectious acid micromilieu with a meliorative energy band. It is conducive to the NIR-induced capabilities to improve ROS yield. The GOx can consume glucose to produce H<sub>2</sub>O<sub>2</sub> as an amplifier. The combined catalytic efficiency of type-I heterojunction and the followed enhanced NIR-induced capabilities of dual Z-scheme heterojunction can powerfully remove the pathogenic colonization. On top of that, the sample can downgrade the Forkhead box O (FoxO) signaling pathway to regulate cell cycle, facilitate cell proliferation, and further promote wound repairment. This work provides an effective and feasible antibacterial strategy and way of thinking for the diabetic infectious wound healing.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 19","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202421228","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The dilemma of diabetic infectious wound healing lies in inhibiting the pathogenic colonization and regulating the hyperglycemia. The pivotal anti-pathogenic efficiency is focused on the confined and gradually weaken reactive oxygen species (ROS) yield in the peculiar micromilieu owing to the materials transformation/dissolution. There, the type-transformational bio-heterojunction enzyme (BioHJzyme) with operando composition-modulation is proposed, which is consisted by glucose oxidase (GOx) decorated type-I FeSe2/Cu2O heterojunction. It exhibits robust catalytic efficiency to produce ROS. Followed, the type-I heterojunction can be transformed into dual Z-scheme heterojunction with a composition of FeSe2/CuSe/Cu2O primed by the infectious acid micromilieu with a meliorative energy band. It is conducive to the NIR-induced capabilities to improve ROS yield. The GOx can consume glucose to produce H2O2 as an amplifier. The combined catalytic efficiency of type-I heterojunction and the followed enhanced NIR-induced capabilities of dual Z-scheme heterojunction can powerfully remove the pathogenic colonization. On top of that, the sample can downgrade the Forkhead box O (FoxO) signaling pathway to regulate cell cycle, facilitate cell proliferation, and further promote wound repairment. This work provides an effective and feasible antibacterial strategy and way of thinking for the diabetic infectious wound healing.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
由成分调节介导的能带工程激活的糖尿病感染性伤口愈合型转化生物酶
糖尿病感染创面愈合的困境在于抑制病原菌定植和调节高血糖。在特殊的微环境中,由于材料的转化/溶解,活性氧(ROS)的产量受到限制并逐渐减弱,这是关键的抗病原菌效率。在此基础上,提出了由葡萄糖氧化酶(GOx)修饰的i型FeSe2/Cu2O异质结型转化型生物异质结酶(BioHJzyme)。它在生成活性氧方面表现出强大的催化效率。然后,i型异质结可以转化为双z型异质结,其组成为FeSe2/CuSe/Cu2O,由具有改善能带的感染酸微环境引发。这有利于nir诱导的能力提高ROS产量。GOx可以消耗葡萄糖产生H2O2作为放大器。i型异质结的联合催化效率和随后增强的nir诱导双z型异质结的能力可以有效地去除致病性定殖。此外,该样品还可以下调叉头盒O (FoxO)信号通路,调节细胞周期,促进细胞增殖,进而促进伤口修复。本研究为糖尿病感染性伤口的愈合提供了一种有效可行的抗菌策略和思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Special Adsorption Additive Enabling Robust Interphases for Thermal‐Resilient Lithium Metal Batteries Cu Sites d Orbital Regulation Enables Highly Efficient Photocatalytic CO 2 ‐to‐Ethylene Conversion Self‐Confined Effects Induced by F─H Bonds Simultaneously Enhance Mechanical Strength, Conductivity, and Self‐Healability of Ionic Elastomers A Multifunctional NIR‐II Rare‐Earth Nanoagent for In Vivo Monitoring Cancer Revascularization and Prognosis Ultrabroadband, Self‐Powered, Highly‐Sensitive Photodetector Based on Bi 2 Te 3 /Graphene Heterostructure Synergistically Enhanced with Photothermal Mechanisms and Au Antenna
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1